Month End Sale Limited Time 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: 70percent

Amazon Web Services MLS-C01 AWS Certified Machine Learning - Specialty Exam Practice Test

Demo: 94 questions
Total 322 questions

AWS Certified Machine Learning - Specialty Questions and Answers

Question 1

A Data Scientist needs to analyze employment data. The dataset contains approximately 10 million

observations on people across 10 different features. During the preliminary analysis, the Data Scientist notices

that income and age distributions are not normal. While income levels shows a right skew as expected, with fewer individuals having a higher income, the age distribution also show a right skew, with fewer older

individuals participating in the workforce.

Which feature transformations can the Data Scientist apply to fix the incorrectly skewed data? (Choose two.)

Options:

A.

Cross-validation

B.

Numerical value binning

C.

High-degree polynomial transformation

D.

Logarithmic transformation

E.

One hot encoding

Question 2

A company builds computer-vision models that use deep learning for the autonomous vehicle industry. A machine learning (ML) specialist uses an Amazon EC2 instance that has a CPU: GPU ratio of 12:1 to train the models.

The ML specialist examines the instance metric logs and notices that the GPU is idle half of the time The ML specialist must reduce training costs without increasing the duration of the training jobs.

Which solution will meet these requirements?

Options:

A.

Switch to an instance type that has only CPUs.

B.

Use a heterogeneous cluster that has two different instances groups.

C.

Use memory-optimized EC2 Spot Instances for the training jobs.

D.

Switch to an instance type that has a CPU GPU ratio of 6:1.

Question 3

A monitoring service generates 1 TB of scale metrics record data every minute A Research team performs queries on this data using Amazon Athena The queries run slowly due to the large volume of data, and the team requires better performance

How should the records be stored in Amazon S3 to improve query performance?

Options:

A.

CSV files

B.

Parquet files

C.

Compressed JSON

D.

RecordIO

Question 4

A Machine Learning Specialist must build out a process to query a dataset on Amazon S3 using Amazon Athena The dataset contains more than 800.000 records stored as plaintext CSV files Each record contains 200 columns and is approximately 1 5 MB in size Most queries will span 5 to 10 columns only

How should the Machine Learning Specialist transform the dataset to minimize query runtime?

Options:

A.

Convert the records to Apache Parquet format

B.

Convert the records to JSON format

C.

Convert the records to GZIP CSV format

D.

Convert the records to XML format

Question 5

A Machine Learning Specialist is assigned a TensorFlow project using Amazon SageMaker for training, and needs to continue working for an extended period with no Wi-Fi access.

Which approach should the Specialist use to continue working?

Options:

A.

Install Python 3 and boto3 on their laptop and continue the code development using that environment.

B.

Download the TensorFlow Docker container used in Amazon SageMaker from GitHub to their local environment, and use the Amazon SageMaker Python SDK to test the code.

C.

Download TensorFlow from tensorflow.org to emulate the TensorFlow kernel in the SageMaker environment.

D.

Download the SageMaker notebook to their local environment then install Jupyter Notebooks on their laptop and continue the development in a local notebook.

Question 6

A machine learning (ML) engineer is preparing a dataset for a classification model. The ML engineer notices that some continuous numeric features have a significantly greater value than most other features. A business expert explains that the features are independently informative and that the dataset is representative of the target distribution.

After training, the model's inferences accuracy is lower than expected.

Which preprocessing technique will result in the GREATEST increase of the model's inference accuracy?

Options:

A.

Normalize the problematic features.

B.

Bootstrap the problematic features.

C.

Remove the problematic features.

D.

Extrapolate synthetic features.

Question 7

A company has a podcast platform that has thousands of users. The company implemented an algorithm to detect low podcast engagement based on a 10-minute running window of user events such as listening to. pausing, and closing the podcast. A machine learning (ML) specialist is designing the ingestion process for these events. The ML specialist needs to transform the data to prepare the data for inference.

How should the ML specialist design the transformation step to meet these requirements with the LEAST operational effort?

Options:

A.

Use an Amazon Managed Streaming for Apache Kafka (Amazon MSK) cluster to ingest event data. Use Amazon Managed Service for Apache Flink (previously known as Amazon Kinesis Data Analytics) to transform the most recent 10 minutes of data before inference.

B.

Use Amazon Kinesis Data Streams to ingest event data. Store the data in Amazon S3 by using Amazon Data Firehose. Use AWS Lambda to transform the most recent 10 minutes of data before inference.

C.

Use Amazon Kinesis Data Streams to ingest event data. Use Amazon Managed Service for Apache Flink (previously known as Amazon Kinesis Data Analytics) to transform the most recent 10 minutes of data before inference.

D.

Use an Amazon Managed Streaming for Apache Kafka (Amazon MSK) cluster to ingest event data. Use AWS Lambda to transform the most recent 10 minutes of data before inference.

Question 8

A company is converting a large number of unstructured paper receipts into images. The company wants to create a model based on natural language processing (NLP) to find relevant entities such as date, location, and notes, as well as some custom entities such as receipt numbers.

The company is using optical character recognition (OCR) to extract text for data labeling. However, documents are in different structures and formats, and the company is facing challenges with setting up the manual workflows for each document type. Additionally, the company trained a named entity recognition (NER) model for custom entity detection using a small sample size. This model has a very low confidence score and will require retraining with a large dataset.

Which solution for text extraction and entity detection will require the LEAST amount of effort?

Options:

A.

Extract text from receipt images by using Amazon Textract. Use the Amazon SageMaker BlazingText algorithm to train on the text for entities and custom entities.

B.

Extract text from receipt images by using a deep learning OCR model from the AWS Marketplace. Use the NER deep learning model to extract entities.

C.

Extract text from receipt images by using Amazon Textract. Use Amazon Comprehend for entity detection, and use Amazon Comprehend custom entity recognition for custom entity detection.

D.

Extract text from receipt images by using a deep learning OCR model from the AWS Marketplace. Use Amazon Comprehend for entity detection, and use Amazon Comprehend custom entity recognition for custom entity detection.

Question 9

A global financial company is using machine learning to automate its loan approval process. The company has a dataset of customer information. The dataset contains some categorical fields, such as customer location by city and housing status. The dataset also includes financial fields in different units, such as account balances in US dollars and monthly interest in US cents.

The company’s data scientists are using a gradient boosting regression model to infer the credit score for each customer. The model has a training accuracy of 99% and a testing accuracy of 75%. The data scientists want to improve the model’s testing accuracy.

Which process will improve the testing accuracy the MOST?

Options:

A.

Use a one-hot encoder for the categorical fields in the dataset. Perform standardization on the financial fields in the dataset. Apply L1 regularization to the data.

B.

Use tokenization of the categorical fields in the dataset. Perform binning on the financial fields in the dataset. Remove the outliers in the data by using the z-score.

C.

Use a label encoder for the categorical fields in the dataset. Perform L1 regularization on the financial fields in the dataset. Apply L2 regularization to the data.

D.

Use a logarithm transformation on the categorical fields in the dataset. Perform binning on the financial fields in the dataset. Use imputation to populate missing values in the dataset.

Question 10

A company operates an amusement park. The company wants to collect, monitor, and store real-time traffic data at several park entrances by using strategically placed cameras. The company's security team must be able to immediately access the data for viewing. Stored data must be indexed and must be accessible to the company's data science team.

Which solution will meet these requirements MOST cost-effectively?

Options:

A.

Use Amazon Kinesis Video Streams to ingest, index, and store the data. Use the built-in integration with Amazon Rekognition for viewing by the security team.

B.

Use Amazon Kinesis Video Streams to ingest, index, and store the data. Use the built-in HTTP live streaming (HLS) capability for viewing by the security team.

C.

Use Amazon Rekognition Video and the GStreamer plugin to ingest the data for viewing by the security team. Use Amazon Kinesis Data Streams to index and store the data.

D.

Use Amazon Data Firehose to ingest, index, and store the data. Use the built-in HTTP live streaming (HLS) capability for viewing by the security team.

Question 11

A Machine Learning Specialist is working for a credit card processing company and receives an unbalanced dataset containing credit card transactions. It contains 99,000 valid transactions and 1,000 fraudulent transactions The Specialist is asked to score a model that was run against the dataset The Specialist has been advised that identifying valid transactions is equally as important as identifying fraudulent transactions

What metric is BEST suited to score the model?

Options:

A.

Precision

B.

Recall

C.

Area Under the ROC Curve (AUC)

D.

Root Mean Square Error (RMSE)

Question 12

The Chief Editor for a product catalog wants the Research and Development team to build a machine learning system that can be used to detect whether or not individuals in a collection of images are wearing the company's retail brand The team has a set of training data

Which machine learning algorithm should the researchers use that BEST meets their requirements?

Options:

A.

Latent Dirichlet Allocation (LDA)

B.

Recurrent neural network (RNN)

C.

K-means

D.

Convolutional neural network (CNN)

Question 13

A company ingests machine learning (ML) data from web advertising clicks into an Amazon S3 data lake. Click data is added to an Amazon Kinesis data stream by using the Kinesis Producer Library (KPL). The data is loaded into the S3 data lake from the data stream by using an Amazon Kinesis Data Firehose delivery stream. As the data volume increases, an ML specialist notices that the rate of data ingested into Amazon S3 is relatively constant. There also is an increasing backlog of data for Kinesis Data Streams and Kinesis Data Firehose to ingest.

Which next step is MOST likely to improve the data ingestion rate into Amazon S3?

Options:

A.

Increase the number of S3 prefixes for the delivery stream to write to.

B.

Decrease the retention period for the data stream.

C.

Increase the number of shards for the data stream.

D.

Add more consumers using the Kinesis Client Library (KCL).

Question 14

A Machine Learning Specialist needs to be able to ingest streaming data and store it in Apache Parquet files for exploration and analysis. Which of the following services would both ingest and store this data in the correct format?

Options:

A.

AWSDMS

B.

Amazon Kinesis Data Streams

C.

Amazon Kinesis Data Firehose

D.

Amazon Kinesis Data Analytics

Question 15

A data engineer at a bank is evaluating a new tabular dataset that includes customer data. The data engineer will use the customer data to create a new model to predict customer behavior. After creating a correlation matrix for the variables, the data engineer notices that many of the 100 features are highly correlated with each other.

Which steps should the data engineer take to address this issue? (Choose two.)

Options:

A.

Use a linear-based algorithm to train the model.

B.

Apply principal component analysis (PCA).

C.

Remove a portion of highly correlated features from the dataset.

D.

Apply min-max feature scaling to the dataset.

E.

Apply one-hot encoding category-based variables.

Question 16

A Machine Learning Specialist deployed a model that provides product recommendations on a company's website Initially, the model was performing very well and resulted in customers buying more products on average However within the past few months the Specialist has noticed that the effect of product recommendations has diminished and customers are starting to return to their original habits of spending less The Specialist is unsure of what happened, as the model has not changed from its initial deployment over a year ago

Which method should the Specialist try to improve model performance?

Options:

A.

The model needs to be completely re-engineered because it is unable to handle product inventory changes

B.

The model's hyperparameters should be periodically updated to prevent drift

C.

The model should be periodically retrained from scratch using the original data while adding a regularization term to handle product inventory changes

D.

The model should be periodically retrained using the original training data plus new data as product inventory changes

Question 17

A retail company collects customer comments about its products from social media, the company website, and customer call logs. A team of data scientists and engineers wants to find common topics and determine which products the customers are referring to in their comments. The team is using natural language processing (NLP) to build a model to help with this classification.

Each product can be classified into multiple categories that the company defines. These categories are related but are not mutually exclusive. For example, if there is mention of "Sample Yogurt" in the document of customer comments, then "Sample Yogurt" should be classified as "yogurt," "snack," and "dairy product."

The team is using Amazon Comprehend to train the model and must complete the project as soon as possible.

Which functionality of Amazon Comprehend should the team use to meet these requirements?

Options:

A.

Custom classification with multi-class mode

B.

Custom classification with multi-label mode

C.

Custom entity recognition

D.

Built-in models

Question 18

A data scientist receives a collection of insurance claim records. Each record includes a claim ID. the final outcome of the insurance claim, and the date of the final outcome.

The final outcome of each claim is a selection from among 200 outcome categories. Some claim records include only partial information. However, incomplete claim records include only 3 or 4 outcome ...gones from among the 200 available outcome categories. The collection includes hundreds of records for each outcome category. The records are from the previous 3 years.

The data scientist must create a solution to predict the number of claims that will be in each outcome category every month, several months in advance.

Which solution will meet these requirements?

Options:

A.

Perform classification every month by using supervised learning of the 20X3 outcome categories based on claim contents.

B.

Perform reinforcement learning by using claim IDs and dates Instruct the insurance agents who submit the claim records to estimate the expected number of claims in each outcome category every month

C.

Perform forecasting by using claim IDs and dates to identify the expected number ot claims in each outcome category every month.

D.

Perform classification by using supervised learning of the outcome categories for which partial information on claim contents is provided. Perform forecasting by using claim IDs and dates for all other outcome categories.

Question 19

An agriculture company wants to improve crop yield forecasting for the upcoming season by using crop yields from the last three seasons. The company wants to compare the performance of its new scikit-learn model to the benchmark.

A data scientist needs to package the code into a container that computes both the new model forecast and the benchmark.

The data scientist wants AWS to be responsible for the operational maintenance of the container.

Which solution will meet these requirements?

Options:

A.

Package the code as the training script for an Amazon SageMaker scikit-learn container.

B.

Package the code into a custom-built container. Push the container to Amazon Elastic Container Registry (Amazon ECR).

C.

Package the code into a custom-built container. Push the container to AWS Fargate.

D.

Package the code by extending an Amazon SageMaker scikit-learn container.

Question 20

A gaming company has launched an online game where people can start playing for free but they need to pay if they choose to use certain features The company needs to build an automated system to predict whether or not a new user will become a paid user within 1 year The company has gathered a labeled dataset from 1 million users

The training dataset consists of 1.000 positive samples (from users who ended up paying within 1 year) and 999.000 negative samples (from users who did not use any paid features) Each data sample consists of 200 features including user age, device, location, and play patterns

Using this dataset for training, the Data Science team trained a random forest model that converged with over 99% accuracy on the training set However, the prediction results on a test dataset were not satisfactory.

Which of the following approaches should the Data Science team take to mitigate this issue? (Select TWO.)

Options:

A.

Add more deep trees to the random forest to enable the model to learn more features.

B.

indicate a copy of the samples in the test database in the training dataset

C.

Generate more positive samples by duplicating the positive samples and adding a small amount of noise to the duplicated data.

D.

Change the cost function so that false negatives have a higher impact on the cost value than false positives

E.

Change the cost function so that false positives have a higher impact on the cost value than false negatives

Question 21

A financial company is trying to detect credit card fraud. The company observed that, on average, 2% of credit card transactions were fraudulent. A data scientist trained a classifier on a year's worth of credit card transactions data. The model needs to identify the fraudulent transactions (positives) from the regular ones (negatives). The company's goal is to accurately capture as many positives as possible.

Which metrics should the data scientist use to optimize the model? (Choose two.)

Options:

A.

Specificity

B.

False positive rate

C.

Accuracy

D.

Area under the precision-recall curve

E.

True positive rate

Question 22

A retail company intends to use machine learning to categorize new products A labeled dataset of current products was provided to the Data Science team The dataset includes 1 200 products The labeled dataset has 15 features for each product such as title dimensions, weight, and price Each product is labeled as belonging to one of six categories such as books, games, electronics, and movies.

Which model should be used for categorizing new products using the provided dataset for training?

Options:

A.

An XGBoost model where the objective parameter is set to multi: softmax

B.

A deep convolutional neural network (CNN) with a softmax activation function for the last layer

C.

A regression forest where the number of trees is set equal to the number of product categories

D.

A DeepAR forecasting model based on a recurrent neural network (RNN)

Question 23

A machine learning specialist is running an Amazon SageMaker endpoint using the built-in object detection algorithm on a P3 instance for real-time predictions in a company's production application. When evaluating the model's resource utilization, the specialist notices that the model is using only a fraction of the GPU.

Which architecture changes would ensure that provisioned resources are being utilized effectively?

Options:

A.

Redeploy the model as a batch transform job on an M5 instance.

B.

Redeploy the model on an M5 instance. Attach Amazon Elastic Inference to the instance.

C.

Redeploy the model on a P3dn instance.

D.

Deploy the model onto an Amazon Elastic Container Service (Amazon ECS) cluster using a P3 instance.

Question 24

A company wants to segment a large group of customers into subgroups based on shared characteristics. The company’s data scientist is planning to use the Amazon SageMaker built-in k-means clustering algorithm for this task. The data scientist needs to determine the optimal number of subgroups (k) to use.

Which data visualization approach will MOST accurately determine the optimal value of k?

Options:

A.

Calculate the principal component analysis (PCA) components. Run the k-means clustering algorithm for a range of k by using only the first two PCA components. For each value of k, create a scatter plot with a different color for each cluster. The optimal value of k is the value where the clusters start to look reasonably separated.

B.

Calculate the principal component analysis (PCA) components. Create a line plot of the number of components against the explained variance. The optimal value of k is the number of PCA components after which the curve starts decreasing in a linear fashion.

C.

Create a t-distributed stochastic neighbor embedding (t-SNE) plot for a range of perplexity values. The optimal value of k is the value of perplexity, where the clusters start to look reasonably separated.

D.

Run the k-means clustering algorithm for a range of k. For each value of k, calculate the sum of squared errors (SSE). Plot a line chart of the SSE for each value of k. The optimal value of k is the point after which the curve starts decreasing in a linear fashion.

Question 25

A Machine Learning Specialist has built a model using Amazon SageMaker built-in algorithms and is not getting expected accurate results The Specialist wants to use hyperparameter optimization to increase the model's accuracy

Which method is the MOST repeatable and requires the LEAST amount of effort to achieve this?

Options:

A.

Launch multiple training jobs in parallel with different hyperparameters

B.

Create an AWS Step Functions workflow that monitors the accuracy in Amazon CloudWatch Logs and relaunches the training job with a defined list of hyperparameters

C.

Create a hyperparameter tuning job and set the accuracy as an objective metric.

D.

Create a random walk in the parameter space to iterate through a range of values that should be used for each individual hyperparameter

Question 26

A Machine Learning Specialist is using Apache Spark for pre-processing training data As part of the Spark pipeline, the Specialist wants to use Amazon SageMaker for training a model and hosting it Which of the following would the Specialist do to integrate the Spark application with SageMaker? (Select THREE)

Options:

A.

Download the AWS SDK for the Spark environment

B.

Install the SageMaker Spark library in the Spark environment.

C.

Use the appropriate estimator from the SageMaker Spark Library to train a model.

D.

Compress the training data into a ZIP file and upload it to a pre-defined Amazon S3 bucket.

E.

Use the sageMakerModel. transform method to get inferences from the model hosted in SageMaker

F.

Convert the DataFrame object to a CSV file, and use the CSV file as input for obtaining inferences from SageMaker.

Question 27

A company deployed a machine learning (ML) model on the company website to predict real estate prices. Several months after deployment, an ML engineer notices that the accuracy of the model has gradually decreased.

The ML engineer needs to improve the accuracy of the model. The engineer also needs to receive notifications for any future performance issues.

Which solution will meet these requirements?

Options:

A.

Perform incremental training to update the model. Activate Amazon SageMaker Model Monitor to detect model performance issues and to send notifications.

B.

Use Amazon SageMaker Model Governance. Configure Model Governance to automatically adjust model hyper para meters. Create a performance threshold alarm in Amazon CloudWatch to send notifications.

C.

Use Amazon SageMaker Debugger with appropriate thresholds. Configure Debugger to send Amazon CloudWatch alarms to alert the team Retrain the model by using only data from the previous several months.

D.

Use only data from the previous several months to perform incremental training to update the model. Use Amazon SageMaker Model Monitor to detect model performance issues and to send notifications.

Question 28

A company has an ecommerce website with a product recommendation engine built in TensorFlow. The recommendation engine endpoint is hosted by Amazon SageMaker. Three compute-optimized instances support the expected peak load of the website.

Response times on the product recommendation page are increasing at the beginning of each month. Some users are encountering errors. The website receives the majority of its traffic between 8 AM and 6 PM on weekdays in a single time zone.

Which of the following options are the MOST effective in solving the issue while keeping costs to a minimum? (Choose two.)

Options:

A.

Configure the endpoint to use Amazon Elastic Inference (EI) accelerators.

B.

Create a new endpoint configuration with two production variants.

C.

Configure the endpoint to automatically scale with the Invocations Per Instance metric.

D.

Deploy a second instance pool to support a blue/green deployment of models.

E.

Reconfigure the endpoint to use burstable instances.

Question 29

An e commerce company wants to launch a new cloud-based product recommendation feature for its web application. Due to data localization regulations, any sensitive data must not leave its on-premises data center, and the product recommendation model must be trained and tested using nonsensitive data only. Data transfer to the cloud must use IPsec. The web application is hosted on premises with a PostgreSQL database that contains all the data. The company wants the data to be uploaded securely to Amazon S3 each day for model retraining.

How should a machine learning specialist meet these requirements?

Options:

A.

Create an AWS Glue job to connect to the PostgreSQL DB instance. Ingest tables without sensitive data through an AWS Site-to-Site VPN connection directly into Amazon S3.

B.

Create an AWS Glue job to connect to the PostgreSQL DB instance. Ingest all data through an AWS Site- to-Site VPN connection into Amazon S3 while removing sensitive data using a PySpark job.

C.

Use AWS Database Migration Service (AWS DMS) with table mapping to select PostgreSQL tables with no sensitive data through an SSL connection. Replicate data directly into Amazon S3.

D.

Use PostgreSQL logical replication to replicate all data to PostgreSQL in Amazon EC2 through AWS Direct Connect with a VPN connection. Use AWS Glue to move data from Amazon EC2 to Amazon S3.

Question 30

A Machine Learning Specialist is configuring automatic model tuning in Amazon SageMaker

When using the hyperparameter optimization feature, which of the following guidelines should be followed to improve optimization?

Choose the maximum number of hyperparameters supported by

Options:

A.

Amazon SageMaker to search the largest number of combinations possible

B.

Specify a very large hyperparameter range to allow Amazon SageMaker to cover every possible value.

C.

Use log-scaled hyperparameters to allow the hyperparameter space to be searched as quickly as possible

D.

Execute only one hyperparameter tuning job at a time and improve tuning through successive rounds of experiments

Question 31

A Data Scientist is building a model to predict customer churn using a dataset of 100 continuous numerical

features. The Marketing team has not provided any insight about which features are relevant for churn

prediction. The Marketing team wants to interpret the model and see the direct impact of relevant features on

the model outcome. While training a logistic regression model, the Data Scientist observes that there is a wide

gap between the training and validation set accuracy.

Which methods can the Data Scientist use to improve the model performance and satisfy the Marketing team’s

needs? (Choose two.)

Options:

A.

Add L1 regularization to the classifier

B.

Add features to the dataset

C.

Perform recursive feature elimination

D.

Perform t-distributed stochastic neighbor embedding (t-SNE)

E.

Perform linear discriminant analysis

Question 32

A retail company stores 100 GB of daily transactional data in Amazon S3 at periodic intervals. The company wants to identify the schema of the transactional data. The company also wants to perform transformations on the transactional data that is in Amazon S3.

The company wants to use a machine learning (ML) approach to detect fraud in the transformed data.

Which combination of solutions will meet these requirements with the LEAST operational overhead? {Select THREE.)

Options:

A.

Use Amazon Athena to scan the data and identify the schema.

B.

Use AWS Glue crawlers to scan the data and identify the schema.

C.

Use Amazon Redshift to store procedures to perform data transformations

D.

Use AWS Glue workflows and AWS Glue jobs to perform data transformations.

E.

Use Amazon Redshift ML to train a model to detect fraud.

F.

Use Amazon Fraud Detector to train a model to detect fraud.

Question 33

A Machine Learning Specialist is working with multiple data sources containing billions of records that need to be joined. What feature engineering and model development approach should the Specialist take with a dataset this large?

Options:

A.

Use an Amazon SageMaker notebook for both feature engineering and model development

B.

Use an Amazon SageMaker notebook for feature engineering and Amazon ML for model development

C.

Use Amazon EMR for feature engineering and Amazon SageMaker SDK for model development

D.

Use Amazon ML for both feature engineering and model development.

Question 34

A Machine Learning Specialist is building a logistic regression model that will predict whether or not a person will order a pizza. The Specialist is trying to build the optimal model with an ideal classification threshold.

What model evaluation technique should the Specialist use to understand how different classification thresholds will impact the model's performance?

Options:

A.

Receiver operating characteristic (ROC) curve

B.

Misclassification rate

C.

Root Mean Square Error (RM&)

D.

L1 norm

Question 35

A large company has developed a B1 application that generates reports and dashboards using data collected from various operational metrics The company wants to provide executives with an enhanced experience so they can use natural language to get data from the reports The company wants the executives to be able ask questions using written and spoken interlaces

Which combination of services can be used to build this conversational interface? (Select THREE)

Options:

A.

Alexa for Business

B.

Amazon Connect

C.

Amazon Lex

D.

Amazon Poly

E.

Amazon Comprehend

F.

Amazon Transcribe

Question 36

A financial services company wants to adopt Amazon SageMaker as its default data science environment. The company's data scientists run machine learning (ML) models on confidential financial data. The company is worried about data egress and wants an ML engineer to secure the environment.

Which mechanisms can the ML engineer use to control data egress from SageMaker? (Choose three.)

Options:

A.

Connect to SageMaker by using a VPC interface endpoint powered by AWS PrivateLink.

B.

Use SCPs to restrict access to SageMaker.

C.

Disable root access on the SageMaker notebook instances.

D.

Enable network isolation for training jobs and models.

E.

Restrict notebook presigned URLs to specific IPs used by the company.

F.

Protect data with encryption at rest and in transit. Use AWS Key Management Service (AWS KMS) to manage encryption keys.

Question 37

A Marketing Manager at a pet insurance company plans to launch a targeted marketing campaign on social media to acquire new customers Currently, the company has the following data in Amazon Aurora

• Profiles for all past and existing customers

• Profiles for all past and existing insured pets

• Policy-level information

• Premiums received

• Claims paid

What steps should be taken to implement a machine learning model to identify potential new customers on social media?

Options:

A.

Use regression on customer profile data to understand key characteristics of consumer segments Find similar profiles on social media.

B.

Use clustering on customer profile data to understand key characteristics of consumer segments Find similar profiles on social media.

C.

Use a recommendation engine on customer profile data to understand key characteristics of consumer segments. Find similar profiles on social media

D.

Use a decision tree classifier engine on customer profile data to understand key characteristics of consumer segments. Find similar profiles on social media

Question 38

A manufacturing company wants to create a machine learning (ML) model to predict when equipment is likely to fail. A data science team already constructed a deep learning model by using TensorFlow and a custom Python script in a local environment. The company wants to use Amazon SageMaker to train the model.

Which TensorFlow estimator configuration will train the model MOST cost-effectively?

Options:

A.

Turn on SageMaker Training Compiler by adding compiler_config=TrainingCompilerConfig() as a parameter. Pass the script to the estimator in the call to the TensorFlow fit() method.

B.

Turn on SageMaker Training Compiler by adding compiler_config=TrainingCompilerConfig() as a parameter. Turn on managed spot training by setting the use_spot_instances parameter to True. Pass the script to the estimator in the call to the TensorFlow fit() method.

C.

Adjust the training script to use distributed data parallelism. Specify appropriate values for the distribution parameter. Pass the script to the estimator in the call to the TensorFlow fit() method.

D.

Turn on SageMaker Training Compiler by adding compiler_config=TrainingCompilerConfig() as a parameter. Set the MaxWaitTimeInSeconds parameter to be equal to the MaxRuntimeInSeconds parameter. Pass the script to the estimator in the call to the TensorFlow fit() method.

Question 39

A data scientist is building a forecasting model for a retail company by using the most recent 5 years of sales records that are stored in a data warehouse. The dataset contains sales records for each of the company's stores across five commercial regions The data scientist creates a working dataset with StorelD. Region. Date, and Sales Amount as columns. The data scientist wants to analyze yearly average sales for each region. The scientist also wants to compare how each region performed compared to average sales across all commercial regions.

Which visualization will help the data scientist better understand the data trend?

Options:

A.

Create an aggregated dataset by using the Pandas GroupBy function to get average sales for each year for each store. Create a bar plot, faceted by year, of average sales for each store. Add an extra bar in each facet to represent average sales.

B.

Create an aggregated dataset by using the Pandas GroupBy function to get average sales for each year for each store. Create a bar plot, colored by region and faceted by year, of average sales for each store. Add a horizontal line in each facet to represent average sales.

C.

Create an aggregated dataset by using the Pandas GroupBy function to get average sales for each year for each region Create a bar plot of average sales for each region. Add an extra bar in each facet to represent average sales.

D.

Create an aggregated dataset by using the Pandas GroupBy function to get average sales for each year for each region Create a bar plot, faceted by year, of average sales for each region Add a horizontal line in each facet to represent average sales.

Question 40

A machine learning (ML) specialist uploads a dataset to an Amazon S3 bucket that is protected by server-side encryption with AWS KMS keys (SSE-KMS). The ML specialist needs to ensure that an Amazon SageMaker notebook instance can read the dataset that is in Amazon S3.

Which solution will meet these requirements?

Options:

A.

Define security groups to allow all HTTP inbound and outbound traffic. Assign the security groups to the SageMaker notebook instance.

B.

Configure the SageMaker notebook instance to have access to the VPC. Grant permission in the AWS Key Management Service (AWS KMS) key policy to the notebook's VPC.

C.

Assign an IAM role that provides S3 read access for the dataset to the SageMaker notebook. Grant permission in the KMS key policy to the 1AM role.

D.

Assign the same KMS key that encrypts the data in Amazon S3 to the SageMaker notebook instance.

Question 41

A retail company uses a machine learning (ML) model for daily sales forecasting. The company’s brand manager reports that the model has provided inaccurate results for the past 3 weeks.

At the end of each day, an AWS Glue job consolidates the input data that is used for the forecasting with the actual daily sales data and the predictions of the model. The AWS Glue job stores the data in Amazon S3. The company’s ML team is using an Amazon SageMaker Studio notebook to gain an understanding about the source of the model's inaccuracies.

What should the ML team do on the SageMaker Studio notebook to visualize the model's degradation MOST accurately?

Options:

A.

Create a histogram of the daily sales over the last 3 weeks. In addition, create a histogram of the daily sales from before that period.

B.

Create a histogram of the model errors over the last 3 weeks. In addition, create a histogram of the model errors from before that period.

C.

Create a line chart with the weekly mean absolute error (MAE) of the model.

D.

Create a scatter plot of daily sales versus model error for the last 3 weeks. In addition, create a scatter plot of daily sales versus model error from before that period.

Question 42

A Machine Learning Specialist kicks off a hyperparameter tuning job for a tree-based ensemble model using Amazon SageMaker with Area Under the ROC Curve (AUC) as the objective metric This workflow will eventually be deployed in a pipeline that retrains and tunes hyperparameters each night to model click-through on data that goes stale every 24 hours

With the goal of decreasing the amount of time it takes to train these models, and ultimately to decrease costs, the Specialist wants to reconfigure the input hyperparameter range(s)

Which visualization will accomplish this?

Options:

A.

A histogram showing whether the most important input feature is Gaussian.

B.

A scatter plot with points colored by target variable that uses (-Distributed Stochastic Neighbor Embedding (I-SNE) to visualize the large number of input variables in an easier-to-read dimension.

C.

A scatter plot showing (he performance of the objective metric over each training iteration

D.

A scatter plot showing the correlation between maximum tree depth and the objective metric.

Question 43

A sports analytics company is providing services at a marathon. Each runner in the marathon will have their race ID printed as text on the front of their shirt. The company needs to extract race IDs from images of the runners.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Use Amazon Rekognition.

B.

Use a custom convolutional neural network (CNN).

C.

Use the Amazon SageMaker Object Detection algorithm.

D.

Use Amazon Lookout for Vision.

Question 44

A Machine Learning Specialist is building a supervised model that will evaluate customers' satisfaction with their mobile phone service based on recent usage The model's output should infer whether or not a customer is likely to switch to a competitor in the next 30 days

Which of the following modeling techniques should the Specialist use1?

Options:

A.

Time-series prediction

B.

Anomaly detection

C.

Binary classification

D.

Regression

Question 45

A company is building a new supervised classification model in an AWS environment. The company's data science team notices that the dataset has a large quantity of variables Ail the variables are numeric. The model accuracy for training and validation is low. The model's processing time is affected by high latency The data science team needs to increase the accuracy of the model and decrease the processing.

How it should the data science team do to meet these requirements?

Options:

A.

Create new features and interaction variables.

B.

Use a principal component analysis (PCA) model.

C.

Apply normalization on the feature set.

D.

Use a multiple correspondence analysis (MCA) model

Question 46

Acybersecurity company is collecting on-premises server logs, mobile app logs, and loT sensor data. The company backs up the ingested data in an Amazon S3 bucket and sends the ingested data to Amazon OpenSearch Service for further analysis. Currently, the company has a custom ingestion pipeline that is running on Amazon EC2 instances. The company needs to implement a new serverless ingestion pipeline that can automatically scale to handle sudden changes in the data flow.

Which solution will meet these requirements MOST cost-effectively?

Options:

A.

Create two Amazon Data Firehose delivery streams to send data to the S3 bucket and OpenSearch Service. Configure the data sources to send data to the delivery streams.

B.

Create one Amazon Kinesis data stream. Create two Amazon Data Firehose delivery streams to send data to the S3 bucket and OpenSearch Service. Connect the delivery streams to the data stream. Configure the data sources to send data to the data stream.

C.

Create one Amazon Data Firehose delivery stream to send data to OpenSearch Service. Configure the delivery stream to back up the raw data to the S3 bucket. Configure the data sources to send data to the delivery stream.

D.

Create one Amazon Kinesis data stream. Create one Amazon Data Firehose delivery stream to send data to OpenSearch Service. Configure the delivery stream to back up the data to the S3 bucket. Connect the delivery stream to the data stream. Configure the data sources to send data to the data stream.

Question 47

A company is building a demand forecasting model based on machine learning (ML). In the development stage, an ML specialist uses an Amazon SageMaker notebook to perform feature engineering during work hours that consumes low amounts of CPU and memory resources. A data engineer uses the same notebook to perform data preprocessing once a day on average that requires very high memory and completes in only 2 hours. The data preprocessing is not configured to use GPU. All the processes are running well on an ml.m5.4xlarge notebook instance.

The company receives an AWS Budgets alert that the billing for this month exceeds the allocated budget.

Which solution will result in the MOST cost savings?

Options:

A.

Change the notebook instance type to a memory optimized instance with the same vCPU number as the ml.m5.4xlarge instance has. Stop the notebook when it is not in use. Run both data preprocessing and feature engineering development on that instance.

B.

Keep the notebook instance type and size the same. Stop the notebook when it is not in use. Run data preprocessing on a P3 instance type with the same memory as the ml.m5.4xlarge instance by using Amazon SageMaker Processing.

C.

Change the notebook instance type to a smaller general-purpose instance. Stop the notebook when it is not in use. Run data preprocessing on an ml. r5 instance with the same memory size as the ml.m5.4xlarge instance by using Amazon SageMaker Processing.

D.

Change the notebook instance type to a smaller general-purpose instance. Stop the notebook when it is not in use. Run data preprocessing on an R5 instance with the same memory size as the ml.m5.4xlarge instance by using the Reserved Instance option.

Question 48

Each morning, a data scientist at a rental car company creates insights about the previous day’s rental car reservation demands. The company needs to automate this process by streaming the data to Amazon S3 in near real time. The solution must detect high-demand rental cars at each of the company’s locations. The solution also must create a visualization dashboard that automatically refreshes with the most recent data.

Which solution will meet these requirements with the LEAST development time?

Options:

A.

Use Amazon Kinesis Data Firehose to stream the reservation data directly to Amazon S3. Detect high-demand outliers by using Amazon QuickSight ML Insights. Visualize the data in QuickSight.

B.

Use Amazon Kinesis Data Streams to stream the reservation data directly to Amazon S3. Detect high-demand outliers by using the Random Cut Forest (RCF) trained model in Amazon SageMaker. Visualize the data in Amazon QuickSight.

C.

Use Amazon Kinesis Data Firehose to stream the reservation data directly to Amazon S3. Detect high-demand outliers by using the Random Cut Forest (RCF) trained model in Amazon SageMaker. Visualize the data in Amazon QuickSight.

D.

Use Amazon Kinesis Data Streams to stream the reservation data directly to Amazon S3. Detect high-demand outliers by using Amazon QuickSight ML Insights. Visualize the data in QuickSight.

Question 49

A beauty supply store wants to understand some characteristics of visitors to the store. The store has security video recordings from the past several years. The store wants to generate a report of hourly visitors from the recordings. The report should group visitors by hair style and hair color.

Which solution will meet these requirements with the LEAST amount of effort?

Options:

A.

Use an object detection algorithm to identify a visitor’s hair in video frames. Pass the identified hair to an ResNet-50 algorithm to determine hair style and hair color.

B.

Use an object detection algorithm to identify a visitor’s hair in video frames. Pass the identified hair to an XGBoost algorithm to determine hair style and hair color.

C.

Use a semantic segmentation algorithm to identify a visitor’s hair in video frames. Pass the identified hair to an ResNet-50 algorithm to determine hair style and hair color.

D.

Use a semantic segmentation algorithm to identify a visitor’s hair in video frames. Pass the identified hair to an XGBoost algorithm to determine hair style and hair.

Question 50

A company uses sensors on devices such as motor engines and factory machines to measure parameters, temperature and pressure. The company wants to use the sensor data to predict equipment malfunctions and reduce services outages.

The Machine learning (ML) specialist needs to gather the sensors data to train a model to predict device malfunctions The ML spoctafst must ensure that the data does not contain outliers before training the ..el.

What can the ML specialist meet these requirements with the LEAST operational overhead?

Options:

A.

Load the data into an Amazon SagcMaker Studio notebook. Calculate the first and third quartile Use a SageMaker Data Wrangler data (low to remove only values that are outside of those quartiles.

B.

Use an Amazon SageMaker Data Wrangler bias report to find outliers in the dataset Use a Data Wrangler data flow to remove outliers based on the bias report.

C.

Use an Amazon SageMaker Data Wrangler anomaly detection visualization to find outliers in the dataset. Add a transformation to a Data Wrangler data flow to remove outliers.

D.

Use Amazon Lookout for Equipment to find and remove outliers from the dataset.

Question 51

A developer at a retail company is creating a daily demand forecasting model. The company stores the historical hourly demand data in an Amazon S3 bucket. However, the historical data does not include demand data for some hours.

The developer wants to verify that an autoregressive integrated moving average (ARIMA) approach will be a suitable model for the use case.

How should the developer verify the suitability of an ARIMA approach?

Options:

A.

Use Amazon SageMaker Data Wrangler. Import the data from Amazon S3. Impute hourly missing data. Perform a Seasonal Trend decomposition.

B.

Use Amazon SageMaker Autopilot. Create a new experiment that specifies the S3 data location. Choose ARIMA as the machine learning (ML) problem. Check the model performance.

C.

Use Amazon SageMaker Data Wrangler. Import the data from Amazon S3. Resample data by using the aggregate daily total. Perform a Seasonal Trend decomposition.

D.

Use Amazon SageMaker Autopilot. Create a new experiment that specifies the S3 data location. Impute missing hourly values. Choose ARIMA as the machine learning (ML) problem. Check the model performance.

Question 52

A machine learning (ML) specialist must develop a classification model for a financial services company. A domain expert provides the dataset, which is tabular with 10,000 rows and 1,020 features. During exploratory data analysis, the specialist finds no missing values and a small percentage of duplicate rows. There are correlation scores of > 0.9 for 200 feature pairs. The mean value of each feature is similar to its 50th percentile.

Which feature engineering strategy should the ML specialist use with Amazon SageMaker?

Options:

A.

Apply dimensionality reduction by using the principal component analysis (PCA) algorithm.

B.

Drop the features with low correlation scores by using a Jupyter notebook.

C.

Apply anomaly detection by using the Random Cut Forest (RCF) algorithm.

D.

Concatenate the features with high correlation scores by using a Jupyter notebook.

Question 53

A large consumer goods manufacturer has the following products on sale

• 34 different toothpaste variants

• 48 different toothbrush variants

• 43 different mouthwash variants

The entire sales history of all these products is available in Amazon S3 Currently, the company is using custom-built autoregressive integrated moving average (ARIMA) models to forecast demand for these products The company wants to predict the demand for a new product that will soon be launched

Which solution should a Machine Learning Specialist apply?

Options:

A.

Train a custom ARIMA model to forecast demand for the new product.

B.

Train an Amazon SageMaker DeepAR algorithm to forecast demand for the new product

C.

Train an Amazon SageMaker k-means clustering algorithm to forecast demand for the new product.

D.

Train a custom XGBoost model to forecast demand for the new product

Question 54

A machine learning specialist needs to analyze comments on a news website with users across the globe. The specialist must find the most discussed topics in the comments that are in either English or Spanish.

What steps could be used to accomplish this task? (Choose two.)

Options:

A.

Use an Amazon SageMaker BlazingText algorithm to find the topics independently from language. Proceed with the analysis.

B.

Use an Amazon SageMaker seq2seq algorithm to translate from Spanish to English, if necessary. Use a SageMaker Latent Dirichlet Allocation (LDA) algorithm to find the topics.

C.

Use Amazon Translate to translate from Spanish to English, if necessary. Use Amazon Comprehend topic modeling to find the topics.

D.

Use Amazon Translate to translate from Spanish to English, if necessary. Use Amazon Lex to extract topics form the content.

E.

Use Amazon Translate to translate from Spanish to English, if necessary. Use Amazon SageMaker Neural Topic Model (NTM) to find the topics.

Question 55

A company is building a predictive maintenance system using real-time data from devices on remote sites. There is no AWS Direct Connect connection or VPN connection between the sites and the company’s VPC. The data needs to be ingested in real time from the devices into Amazon S3.

Transformation is needed to convert the raw data into clean .csv data to be fed into the machine learning (ML) model. The transformation needs to happen during the ingestion process. When transformation fails, the records need to be stored in a specific location in Amazon S3 for human review. The raw data before transformation also needs to be stored in Amazon S3.

How should an ML specialist architect the solution to meet these requirements with the LEAST effort?

Options:

A.

Use Amazon Data Firehose with Amazon S3 as the destination. Configure Firehose to invoke an AWS Lambda function for data transformation. Enable source record backup on Firehose.

B.

Use Amazon Managed Streaming for Apache Kafka. Set up workers in Amazon Elastic Container Service (Amazon ECS) to move data from Kafka brokers to Amazon S3 while transforming it. Configure workers to store raw and unsuccessfully transformed data in different S3 buckets.

C.

Use Amazon Data Firehose with Amazon S3 as the destination. Configure Firehose to invoke an Apache Spark job in AWS Glue for data transformation. Enable source record backup and configure the error prefix.

D.

Use Amazon Kinesis Data Streams in front of Amazon Data Firehose. Use Kinesis Data Streams with AWS Lambda to store raw data in Amazon S3. Configure Firehose to invoke a Lambda function for data transformation with Amazon S3 as the destination.

Question 56

This graph shows the training and validation loss against the epochs for a neural network

The network being trained is as follows

• Two dense layers one output neuron

• 100 neurons in each layer

• 100 epochs

• Random initialization of weights

Which technique can be used to improve model performance in terms of accuracy in the validation set?

Options:

A.

Early stopping

B.

Random initialization of weights with appropriate seed

C.

Increasing the number of epochs

D.

Adding another layer with the 100 neurons

Question 57

An insurance company is creating an application to automate car insurance claims. A machine learning (ML) specialist used an Amazon SageMaker Object Detection - TensorFlow built-in algorithm to train a model to detect scratches and dents in images of cars. After the model was trained, the ML specialist noticed that the model performed better on the training dataset than on the testing dataset.

Which approach should the ML specialist use to improve the performance of the model on the testing data?

Options:

A.

Increase the value of the momentum hyperparameter.

B.

Reduce the value of the dropout_rate hyperparameter.

C.

Reduce the value of the learning_rate hyperparameter.

D.

Increase the value of the L2 hyperparameter.

Question 58

A data scientist is working on a forecast problem by using a dataset that consists of .csv files that are stored in Amazon S3. The files contain a timestamp variable in the following format:

March 1st, 2020, 08:14pm -

There is a hypothesis about seasonal differences in the dependent variable. This number could be higher or lower for weekdays because some days and hours present varying values, so the day of the week, month, or hour could be an important factor. As a result, the data scientist needs to transform the timestamp into weekdays, month, and day as three separate variables to conduct an analysis.

Which solution requires the LEAST operational overhead to create a new dataset with the added features?

Options:

A.

Create an Amazon EMR cluster. Develop PySpark code that can read the timestamp variable as a string, transform and create the new variables, and save the dataset as a new file in Amazon S3.

B.

Create a processing job in Amazon SageMaker. Develop Python code that can read the timestamp variable as a string, transform and create the new variables, and save the dataset as a new file in Amazon S3.

C.

Create a new flow in Amazon SageMaker Data Wrangler. Import the S3 file, use the Featurize date/time transform to generate the new variables, and save the dataset as a new file in Amazon S3.

D.

Create an AWS Glue job. Develop code that can read the timestamp variable as a string, transform and create the new variables, and save the dataset as a new file in Amazon S3.

Question 59

A Machine Learning Specialist at a company sensitive to security is preparing a dataset for model training. The dataset is stored in Amazon S3 and contains Personally Identifiable Information (Pll). The dataset:

* Must be accessible from a VPC only.

* Must not traverse the public internet.

How can these requirements be satisfied?

Options:

A.

Create a VPC endpoint and apply a bucket access policy that restricts access to the given VPC endpoint and the VPC.

B.

Create a VPC endpoint and apply a bucket access policy that allows access from the given VPC endpoint and an Amazon EC2 instance.

C.

Create a VPC endpoint and use Network Access Control Lists (NACLs) to allow traffic between only the given VPC endpoint and an Amazon EC2 instance.

D.

Create a VPC endpoint and use security groups to restrict access to the given VPC endpoint and an Amazon EC2 instance.

Question 60

A Data Scientist is developing a binary classifier to predict whether a patient has a particular disease on a series of test results. The Data Scientist has data on 400 patients randomly selected from the population. The disease is seen in 3% of the population.

Which cross-validation strategy should the Data Scientist adopt?

Options:

A.

A k-fold cross-validation strategy with k=5

B.

A stratified k-fold cross-validation strategy with k=5

C.

A k-fold cross-validation strategy with k=5 and 3 repeats

D.

An 80/20 stratified split between training and validation

Question 61

A machine learning (ML) specialist at a retail company must build a system to forecast the daily sales for one of the company's stores. The company provided the ML specialist with sales data for this store from the past 10 years. The historical dataset includes the total amount of sales on each day for the store. Approximately 10% of the days in the historical dataset are missing sales data.

The ML specialist builds a forecasting model based on the historical dataset. The specialist discovers that the model does not meet the performance standards that the company requires.

Which action will MOST likely improve the performance for the forecasting model?

Options:

A.

Aggregate sales from stores in the same geographic area.

B.

Apply smoothing to correct for seasonal variation.

C.

Change the forecast frequency from daily to weekly.

D.

Replace missing values in the dataset by using linear interpolation.

Question 62

An online delivery company wants to choose the fastest courier for each delivery at the moment an order is placed. The company wants to implement this feature for existing users and new users of its application. Data scientists have trained separate models with XGBoost for this purpose, and the models are stored in Amazon S3. There is one model fof each city where the company operates.

The engineers are hosting these models in Amazon EC2 for responding to the web client requests, with one instance for each model, but the instances have only a 5% utilization in CPU and memory, ....operation engineers want to avoid managing unnecessary resources.

Which solution will enable the company to achieve its goal with the LEAST operational overhead?

Options:

A.

Create an Amazon SageMaker notebook instance for pulling all the models from Amazon S3 using the boto3 library. Remove the existing instances and use the notebook to perform a SageMaker batch transform for performing inferences offline for all the possible users in all the cities. Store the results in different files in Amazon S3. Point the web client to the files.

B.

Prepare an Amazon SageMaker Docker container based on the open-source multi-model server. Remove the existing instances and create a multi-model endpoint in SageMaker instead, pointing to the S3 bucket containing all the models Invoke the endpoint from the web client at runtime, specifying the TargetModel parameter according to the city of each request.

C.

Keep only a single EC2 instance for hosting all the models. Install a model server in the instance and load each model by pulling it from Amazon S3. Integrate the instance with the web client using Amazon API Gateway for responding to the requests in real time, specifying the target resource according to the city of each request.

D.

Prepare a Docker container based on the prebuilt images in Amazon SageMaker. Replace the existing instances with separate SageMaker endpoints. one for each city where the company operates. Invoke the endpoints from the web client, specifying the URL and EndpomtName parameter according to the city of each request.

Question 63

A tourism company uses a machine learning (ML) model to make recommendations to customers. The company uses an Amazon SageMaker environment and set hyperparameter tuning completion criteria to MaxNumberOfTrainingJobs.

An ML specialist wants to change the hyperparameter tuning completion criteria. The ML specialist wants to stop tuning immediately after an internal algorithm determines that tuning job is unlikely to improve more than 1% over the objective metric from the best training job.

Which completion criteria will meet this requirement?

Options:

A.

MaxRuntimelnSeconds

B.

TargetObjectiveMetricValue

C.

CompleteOnConvergence

D.

MaxNumberOfTrainingJobsNotlmproving

Question 64

A large JSON dataset for a project has been uploaded to a private Amazon S3 bucket The Machine Learning Specialist wants to securely access and explore the data from an Amazon SageMaker notebook instance A new VPC was created and assigned to the Specialist

How can the privacy and integrity of the data stored in Amazon S3 be maintained while granting access to the Specialist for analysis?

Options:

A.

Launch the SageMaker notebook instance within the VPC with SageMaker-provided internet access enabled Use an S3 ACL to open read privileges to the everyone group

B.

Launch the SageMaker notebook instance within the VPC and create an S3 VPC endpoint for the notebook to access the data Copy the JSON dataset from Amazon S3 into the ML storage volume on the SageMaker notebook instance and work against the local dataset

C.

Launch the SageMaker notebook instance within the VPC and create an S3 VPC endpoint for the notebook to access the data Define a custom S3 bucket policy to only allow requests from your VPC to access the S3 bucket

D.

Launch the SageMaker notebook instance within the VPC with SageMaker-provided internet access enabled. Generate an S3 pre-signed URL for access to data in the bucket

Question 65

A machine learning (ML) engineer has created a feature repository in Amazon SageMaker Feature Store for the company. The company has AWS accounts for development, integration, and production. The company hosts a feature store in the development account. The company uses Amazon S3 buckets to store feature values offline. The company wants to share features and to allow the integration account and the production account to reuse the features that are in the feature repository.

Which combination of steps will meet these requirements? (Select TWO.)

Options:

A.

Create an IAM role in the development account that the integration account and production account can assume. Attach IAM policies to the role that allow access to the feature repository and the S3 buckets.

B.

Share the feature repository that is associated the S3 buckets from the development account to the integration account and the production account by using AWS Resource Access Manager (AWS RAM).

C.

Use AWS Security Token Service (AWS STS) from the integration account and the production account to retrieve credentials for the development account.

D.

Set up S3 replication between the development S3 buckets and the integration and production S3 buckets.

E.

Create an AWS PrivateLink endpoint in the development account for SageMaker.

Question 66

A data scientist at a financial services company used Amazon SageMaker to train and deploy a model that predicts loan defaults. The model analyzes new loan applications and predicts the risk of loan default. To train the model, the data scientist manually extracted loan data from a database. The data scientist performed the model training and deployment steps in a Jupyter notebook that is hosted on SageMaker Studio notebooks. The model's prediction accuracy is decreasing over time. Which combination of slept in the MOST operationally efficient way for the data scientist to maintain the model's accuracy? (Select TWO.)

Options:

A.

Use SageMaker Pipelines to create an automated workflow that extracts fresh data, trains the model, and deploys a new version of the model.

B.

Configure SageMaker Model Monitor with an accuracy threshold to check for model drift. Initiate an Amazon CloudWatch alarm when the threshold is exceeded. Connect the workflow in SageMaker Pipelines with the CloudWatch alarm to automatically initiate retraining.

C.

Store the model predictions in Amazon S3 Create a daily SageMaker Processing job that reads the predictions from Amazon S3, checks for changes in model prediction accuracy, and sends an email notification if a significant change is detected.

D.

Rerun the steps in the Jupyter notebook that is hosted on SageMaker Studio notebooks to retrain the model and redeploy a new version of the model.

E.

Export the training and deployment code from the SageMaker Studio notebooks into a Python script. Package the script into an Amazon Elastic Container Service (Amazon ECS) task that an AWS Lambda function can initiate.

Question 67

A data scientist wants to use Amazon Forecast to build a forecasting model for inventory demand for a retail company. The company has provided a dataset of historic inventory demand for its products as a .csv file stored in an Amazon S3 bucket. The table below shows a sample of the dataset.

How should the data scientist transform the data?

Options:

A.

Use ETL jobs in AWS Glue to separate the dataset into a target time series dataset and an item metadata dataset. Upload both datasets as .csv files to Amazon S3.

B.

Use a Jupyter notebook in Amazon SageMaker to separate the dataset into a related time series dataset and an item metadata dataset. Upload both datasets as tables in Amazon Aurora.

C.

Use AWS Batch jobs to separate the dataset into a target time series dataset, a related time series dataset, and an item metadata dataset. Upload them directly to Forecast from a local machine.

D.

Use a Jupyter notebook in Amazon SageMaker to transform the data into the optimized protobuf recordIO format. Upload the dataset in this format to Amazon S3.

Question 68

A Machine Learning Specialist is building a convolutional neural network (CNN) that will classify 10 types of animals. The Specialist has built a series of layers in a neural network that will take an input image of an animal, pass it through a series of convolutional and pooling layers, and then finally pass it through a dense and fully connected layer with 10 nodes The Specialist would like to get an output from the neural network that is a probability distribution of how likely it is that the input image belongs to each of the 10 classes

Which function will produce the desired output?

Options:

A.

Dropout

B.

Smooth L1 loss

C.

Softmax

D.

Rectified linear units (ReLU)

Question 69

A data scientist needs to identify fraudulent user accounts for a company's ecommerce platform. The company wants the ability to determine if a newly created account is associated with a previously known fraudulent user. The data scientist is using AWS Glue to cleanse the company's application logs during ingestion.

Which strategy will allow the data scientist to identify fraudulent accounts?

Options:

A.

Execute the built-in FindDuplicates Amazon Athena query.

B.

Create a FindMatches machine learning transform in AWS Glue.

C.

Create an AWS Glue crawler to infer duplicate accounts in the source data.

D.

Search for duplicate accounts in the AWS Glue Data Catalog.

Question 70

A machine learning (ML) specialist is using the Amazon SageMaker DeepAR forecasting algorithm to train a model on CPU-based Amazon EC2 On-Demand instances. The model currently takes multiple hours to train. The ML specialist wants to decrease the training time of the model.

Which approaches will meet this requirement7 (SELECT TWO )

Options:

A.

Replace On-Demand Instances with Spot Instances

B.

Configure model auto scaling dynamically to adjust the number of instances automatically.

C.

Replace CPU-based EC2 instances with GPU-based EC2 instances.

D.

Use multiple training instances.

E.

Use a pre-trained version of the model. Run incremental training.

Question 71

An ecommerce company has used Amazon SageMaker to deploy a factorization machines (FM) model to suggest products for customers. The company's data science team has developed two new models by using the TensorFlow and PyTorch deep learning frameworks. The company needs to use A/B testing to evaluate the new models against the deployed model.

...required A/B testing setup is as follows:

• Send 70% of traffic to the FM model, 15% of traffic to the TensorFlow model, and 15% of traffic to the Py Torch model.

• For customers who are from Europe, send all traffic to the TensorFlow model

..sh architecture can the company use to implement the required A/B testing setup?

Options:

A.

Create two new SageMaker endpoints for the TensorFlow and PyTorch models in addition to the existing SageMaker endpoint. Create an Application Load Balancer Create a target group for each endpoint. Configure listener rules and add weight to the target groups. To send traffic to the TensorFlow model for customers who are from Europe, create an additional listener rule to forward traffic to the TensorFlow target group.

B.

Create two production variants for the TensorFlow and PyTorch models. Create an auto scaling policy and configure the desired A/B weights to direct traffic to each production variant Update the existing SageMaker endpoint with the auto scaling policy. To send traffic to the TensorFlow model for customers who are from Europe, set the TargetVariant header in the request to point to the variant name of the TensorFlow model.

C.

Create two new SageMaker endpoints for the TensorFlow and PyTorch models in addition to the existing SageMaker endpoint. Create a Network Load Balancer. Create a target group for each endpoint. Configure listener rules and add weight to the target groups. To send traffic to the TensorFlow model for customers who are from Europe, create an additional listener rule to forward traffic to the TensorFlow target group.

D.

Create two production variants for the TensorFlow and PyTorch models. Specify the weight for each production variant in the SageMaker endpoint configuration. Update the existing SageMaker endpoint with the new configuration. To send traffic to the TensorFlow model for customers who are from Europe, set the TargetVariant header in the request to point to the variant name of the TensorFlow model.

Question 72

A Machine Learning Specialist is configuring Amazon SageMaker so multiple Data Scientists can access notebooks, train models, and deploy endpoints. To ensure the best operational performance, the Specialist needs to be able to track how often the Scientists are deploying models, GPU and CPU utilization on the deployed SageMaker endpoints, and all errors that are generated when an endpoint is invoked.

Which services are integrated with Amazon SageMaker to track this information? (Select TWO.)

Options:

A.

AWS CloudTrail

B.

AWS Health

C.

AWS Trusted Advisor

D.

Amazon CloudWatch

E.

AWS Config

Question 73

A machine learning (ML) specialist needs to extract embedding vectors from a text series. The goal is to provide a ready-to-ingest feature space for a data scientist to develop downstream ML predictive models. The text consists of curated sentences in English. Many sentences use similar words but in different contexts. There are questions and answers among the sentences, and the embedding space must differentiate between them.

Which options can produce the required embedding vectors that capture word context and sequential QA information? (Choose two.)

Options:

A.

Amazon SageMaker seq2seq algorithm

B.

Amazon SageMaker BlazingText algorithm in Skip-gram mode

C.

Amazon SageMaker Object2Vec algorithm

D.

Amazon SageMaker BlazingText algorithm in continuous bag-of-words (CBOW) mode

E.

Combination of the Amazon SageMaker BlazingText algorithm in Batch Skip-gram mode with a custom recurrent neural network (RNN)

Question 74

The displayed graph is from a foresting model for testing a time series.

Considering the graph only, which conclusion should a Machine Learning Specialist make about the behavior of the model?

Options:

A.

The model predicts both the trend and the seasonality well.

B.

The model predicts the trend well, but not the seasonality.

C.

The model predicts the seasonality well, but not the trend.

D.

The model does not predict the trend or the seasonality well.

Question 75

While working on a neural network project, a Machine Learning Specialist discovers thai some features in the data have very high magnitude resulting in this data being weighted more in the cost function What should the Specialist do to ensure better convergence during backpropagation?

Options:

A.

Dimensionality reduction

B.

Data normalization

C.

Model regulanzation

D.

Data augmentation for the minority class

Question 76

A data scientist is building a linear regression model. The scientist inspects the dataset and notices that the mode of the distribution is lower than the median, and the median is lower than the mean.

Which data transformation will give the data scientist the ability to apply a linear regression model?

Options:

A.

Exponential transformation

B.

Logarithmic transformation

C.

Polynomial transformation

D.

Sinusoidal transformation

Question 77

A machine learning specialist is developing a regression model to predict rental rates from rental listings. A variable named Wall_Color represents the most prominent exterior wall color of the property. The following is the sample data, excluding all other variables:

* Building ID 1000 has a Wall_Color value of Red.

* Building ID 1001 has a Wall_Color value of White.

* Building ID 1002 has a Wall_Color value of Green.

The specialist chose a model that needs numerical input data.

Which feature engineering approaches should the specialist use to allow the regression model to learn from the Wall_Color data? (Choose two.)

Options:

A.

Apply integer transformation and set Red = 1, White = 5, and Green = 10.

B.

Add new columns that store one-hot representation of colors.

C.

Replace the color name string by its length.

D.

Create three columns to encode the color in RGB format.

E.

Replace each color name by its training set frequency.

Question 78

A company wants to forecast the daily price of newly launched products based on 3 years of data for older product prices, sales, and rebates. The time-series data has irregular timestamps and is missing some values.

Data scientist must build a dataset to replace the missing values. The data scientist needs a solution that resamptes the data daily and exports the data for further modeling.

Which solution will meet these requirements with the LEAST implementation effort?

Options:

A.

Use Amazon EMR Serveriess with PySpark.

B.

Use AWS Glue DataBrew.

C.

Use Amazon SageMaker Studio Data Wrangler.

D.

Use Amazon SageMaker Studio Notebook with Pandas.

Question 79

An agricultural company is interested in using machine learning to detect specific types of weeds in a 100-acre grassland field. Currently, the company uses tractor-mounted cameras to capture multiple images of the field as 10 × 10 grids. The company also has a large training dataset that consists of annotated images of popular weed classes like broadleaf and non-broadleaf docks.

The company wants to build a weed detection model that will detect specific types of weeds and the location of each type within the field. Once the model is ready, it will be hosted on Amazon SageMaker endpoints. The model will perform real-time inferencing using the images captured by the cameras.

Which approach should a Machine Learning Specialist take to obtain accurate predictions?

Options:

A.

Prepare the images in RecordIO format and upload them to Amazon S3. Use Amazon SageMaker to train, test, and validate the model using an image classification algorithm to categorize images into various weed classes.

B.

Prepare the images in Apache Parquet format and upload them to Amazon S3. Use Amazon SageMaker to train, test, and validate the model using an object-detection single-shot multibox detector (SSD) algorithm.

C.

Prepare the images in RecordIO format and upload them to Amazon S3. Use Amazon SageMaker to train, test, and validate the model using an object-detection single-shot multibox detector (SSD) algorithm.

D.

Prepare the images in Apache Parquet format and upload them to Amazon S3. Use Amazon SageMaker to train, test, and validate the model using an image classification algorithm to categorize images into various weed classes.

Question 80

A Machine Learning Specialist is using Amazon Sage Maker to host a model for a highly available customer-facing application.

The Specialist has trained a new version of the model, validated it with historical data, and now wants to deploy it to production To limit any risk of a negative customer experience, the Specialist wants to be able to monitor the model and roll it back, if needed

What is the SIMPLEST approach with the LEAST risk to deploy the model and roll it back, if needed?

Options:

A.

Create a SageMaker endpoint and configuration for the new model version. Redirect production traffic to the new endpoint by updating the client configuration. Revert traffic to the last version if the model does not perform as expected.

B.

Create a SageMaker endpoint and configuration for the new model version. Redirect production traffic to the new endpoint by using a load balancer Revert traffic to the last version if the model does not perform as expected.

C.

Update the existing SageMaker endpoint to use a new configuration that is weighted to send 5% of the traffic to the new variant. Revert traffic to the last version by resetting the weights if the model does not perform as expected.

D.

Update the existing SageMaker endpoint to use a new configuration that is weighted to send 100% of the traffic to the new variant Revert traffic to the last version by resetting the weights if the model does not perform as expected.

Question 81

A trucking company is collecting live image data from its fleet of trucks across the globe. The data is growing rapidly and approximately 100 GB of new data is generated every day. The company wants to explore machine learning uses cases while ensuring the data is only accessible to specific IAM users.

Which storage option provides the most processing flexibility and will allow access control with IAM?

Options:

A.

Use a database, such as Amazon DynamoDB, to store the images, and set the IAM policies to restrict access to only the desired IAM users.

B.

Use an Amazon S3-backed data lake to store the raw images, and set up the permissions using bucket policies.

C.

Setup up Amazon EMR with Hadoop Distributed File System (HDFS) to store the files, and restrict access to the EMR instances using IAM policies.

D.

Configure Amazon EFS with IAM policies to make the data available to Amazon EC2 instances owned by the IAM users.

Question 82

A Data Scientist is building a linear regression model and will use resulting p-values to evaluate the statistical significance of each coefficient. Upon inspection of the dataset, the Data Scientist discovers that most of the features are normally distributed. The plot of one feature in the dataset is shown in the graphic.

What transformation should the Data Scientist apply to satisfy the statistical assumptions of the linear

regression model?

Options:

A.

Exponential transformation

B.

Logarithmic transformation

C.

Polynomial transformation

D.

Sinusoidal transformation

Question 83

An e-commerce company needs a customized training model to classify images of its shirts and pants products The company needs a proof of concept in 2 to 3 days with good accuracy Which compute choice should the Machine Learning Specialist select to train and achieve good accuracy on the model quickly?

Options:

A.

m5 4xlarge (general purpose)

B.

r5.2xlarge (memory optimized)

C.

p3.2xlarge (GPU accelerated computing)

D.

p3 8xlarge (GPU accelerated computing)

Question 84

A machine learning specialist is developing a proof of concept for government users whose primary concern is security. The specialist is using Amazon SageMaker to train a convolutional neural network (CNN) model for a photo classifier application. The specialist wants to protect the data so that it cannot be accessed and transferred to a remote host by malicious code accidentally installed on the training container.

Which action will provide the MOST secure protection?

Options:

A.

Remove Amazon S3 access permissions from the SageMaker execution role.

B.

Encrypt the weights of the CNN model.

C.

Encrypt the training and validation dataset.

D.

Enable network isolation for training jobs.

Question 85

A data scientist receives a new dataset in .csv format and stores the dataset in Amazon S3. The data scientist will use this dataset to train a machine learning (ML) model.

The data scientist first needs to identify any potential data quality issues in the dataset. The data scientist must identify values that are missing or values that are not valid. The data scientist must also identify the number of outliers in the dataset.

Which solution will meet these requirements with the LEAST operational effort?)

Options:

A.

Create an AWS Glue job to transform the data from .csv format to Apache Parquet format. Use an AWS Glue crawler and Amazon Athena with appropriate SQL queries to retrieve the required information.

B.

Leave the dataset in .csv format. Use an AWS Glue crawler and Amazon Athena with appropriate SQL queries to retrieve the required information.

C.

Create an AWS Glue job to transform the data from .csv format to Apache Parquet format. Import the data into Amazon SageMaker Data Wrangler. Use the Data Quality and Insights Report to retrieve the required information.

D.

Leave the dataset in .csv format. Import the data into Amazon SageMaker Data Wrangler. Use the Data Quality and Insights Report to retrieve the required information.

Question 86

A manufacturing company needs to identify returned smartphones that have been damaged by moisture. The company has an automated process that produces 2.000 diagnostic values for each phone. The database contains more than five million phone evaluations. The evaluation process is consistent, and there are no missing values in the data. A machine learning (ML) specialist has trained an Amazon SageMaker linear learner ML model to classify phones as moisture damaged or not moisture damaged by using all available features. The model's F1 score is 0.6.

What changes in model training would MOST likely improve the model's F1 score? (Select TWO.)

Options:

A.

Continue to use the SageMaker linear learner algorithm. Reduce the number of features with the SageMaker principal component analysis (PCA) algorithm.

B.

Continue to use the SageMaker linear learner algorithm. Reduce the number of features with the scikit-iearn multi-dimensional scaling (MDS) algorithm.

C.

Continue to use the SageMaker linear learner algorithm. Set the predictor type to regressor.

D.

Use the SageMaker k-means algorithm with k of less than 1.000 to train the model

E.

Use the SageMaker k-nearest neighbors (k-NN) algorithm. Set a dimension reduction target of less than 1,000 to train the model.

Question 87

A medical imaging company wants to train a computer vision model to detect areas of concern on patients' CT scans. The company has a large collection of unlabeled CT scans that are linked to each patient and stored in an Amazon S3 bucket. The scans must be accessible to authorized users only. A machine learning engineer needs to build a labeling pipeline.

Which set of steps should the engineer take to build the labeling pipeline with the LEAST effort?

Options:

A.

Create a workforce with AWS Identity and Access Management (IAM). Build a labeling tool on Amazon EC2 Queue images for labeling by using Amazon Simple Queue Service (Amazon SQS). Write the labeling instructions.

B.

Create an Amazon Mechanical Turk workforce and manifest file. Create a labeling job by using the built-in image classification task type in Amazon SageMaker Ground Truth. Write the labeling instructions.

C.

Create a private workforce and manifest file. Create a labeling job by using the built-in bounding box task type in Amazon SageMaker Ground Truth. Write the labeling instructions.

D.

Create a workforce with Amazon Cognito. Build a labeling web application with AWS Amplify. Build a labeling workflow backend using AWS Lambda. Write the labeling instructions.

Question 88

A company stores its documents in Amazon S3 with no predefined product categories. A data scientist needs to build a machine learning model to categorize the documents for all the company's products.

Which solution will meet these requirements with the MOST operational efficiency?

Options:

A.

Build a custom clustering model. Create a Dockerfile and build a Docker image. Register the Docker image in Amazon Elastic Container Registry (Amazon ECR). Use the custom image in Amazon SageMaker to generate a trained model.

B.

Tokenize the data and transform the data into tabulai data. Train an Amazon SageMaker k-means mode to generate the product categories.

C.

Train an Amazon SageMaker Neural Topic Model (NTM) model to generate the product categories.

D.

Train an Amazon SageMaker Blazing Text model to generate the product categories.

Question 89

A company offers an online shopping service to its customers. The company wants to enhance the site’s security by requesting additional information when customers access the site from locations that are different from their normal location. The company wants to update the process to call a machine learning (ML) model to determine when additional information should be requested.

The company has several terabytes of data from its existing ecommerce web servers containing the source IP addresses for each request made to the web server. For authenticated requests, the records also contain the login name of the requesting user.

Which approach should an ML specialist take to implement the new security feature in the web application?

Options:

A.

Use Amazon SageMaker Ground Truth to label each record as either a successful or failed access attempt. Use Amazon SageMaker to train a binary classification model using the factorization machines (FM) algorithm.

B.

Use Amazon SageMaker to train a model using the IP Insights algorithm. Schedule updates and retraining of the model using new log data nightly.

C.

Use Amazon SageMaker Ground Truth to label each record as either a successful or failed access attempt. Use Amazon SageMaker to train a binary classification model using the IP Insights algorithm.

D.

Use Amazon SageMaker to train a model using the Object2Vec algorithm. Schedule updates and retraining of the model using new log data nightly.

Question 90

A Machine Learning Specialist working for an online fashion company wants to build a data ingestion solution for the company's Amazon S3-based data lake.

The Specialist wants to create a set of ingestion mechanisms that will enable future capabilities comprised of:

• Real-time analytics

• Interactive analytics of historical data

• Clickstream analytics

• Product recommendations

Which services should the Specialist use?

Options:

A.

AWS Glue as the data dialog; Amazon Kinesis Data Streams and Amazon Kinesis Data Analytics for real-time data insights; Amazon Kinesis Data Firehose for delivery to Amazon ES for clickstream analytics; Amazon EMR to generate personalized product recommendations

B.

Amazon Athena as the data catalog; Amazon Kinesis Data Streams and Amazon Kinesis Data Analytics for near-realtime data insights; Amazon Kinesis Data Firehose for clickstream analytics; AWS Glue to generate personalized product recommendations

C.

AWS Glue as the data catalog; Amazon Kinesis Data Streams and Amazon Kinesis Data Analytics for historical data insights; Amazon Kinesis Data Firehose for delivery to Amazon ES for clickstream analytics; Amazon EMR to generate personalized product recommendations

D.

Amazon Athena as the data catalog; Amazon Kinesis Data Streams and Amazon Kinesis Data Analytics for historical data insights; Amazon DynamoDB streams for clickstream analytics; AWS Glue to generate personalized product recommendations

Question 91

An agency collects census information within a country to determine healthcare and social program needs by province and city. The census form collects responses for approximately 500 questions from each citizen

Which combination of algorithms would provide the appropriate insights? (Select TWO )

Options:

A.

The factorization machines (FM) algorithm

B.

The Latent Dirichlet Allocation (LDA) algorithm

C.

The principal component analysis (PCA) algorithm

D.

The k-means algorithm

E.

The Random Cut Forest (RCF) algorithm

Question 92

A media company is building a computer vision model to analyze images that are on social media. The model consists of CNNs that the company trained by using images that the company stores in Amazon S3. The company used an Amazon SageMaker training job in File mode with a single Amazon EC2 On-Demand Instance.

Every day, the company updates the model by using about 10,000 images that the company has collected in the last 24 hours. The company configures training with only one epoch. The company wants to speed up training and lower costs without the need to make any code changes.

Which solution will meet these requirements?

Options:

A.

Instead of File mode, configure the SageMaker training job to use Pipe mode. Ingest the data from a pipe.

B.

Instead Of File mode, configure the SageMaker training job to use FastFile mode with no Other changes.

C.

Instead Of On-Demand Instances, configure the SageMaker training job to use Spot Instances. Make no Other changes.

D.

Instead Of On-Demand Instances, configure the SageMaker training job to use Spot Instances. Implement model checkpoints.

Question 93

A company’s data scientist has trained a new machine learning model that performs better on test data than the company’s existing model performs in the production environment. The data scientist wants to replace the existing model that runs on an Amazon SageMaker endpoint in the production environment. However, the company is concerned that the new model might not work well on the production environment data.

The data scientist needs to perform A/B testing in the production environment to evaluate whether the new model performs well on production environment data.

Which combination of steps must the data scientist take to perform the A/B testing? (Choose two.)

Options:

A.

Create a new endpoint configuration that includes a production variant for each of the two models.

B.

Create a new endpoint configuration that includes two target variants that point to different endpoints.

C.

Deploy the new model to the existing endpoint.

D.

Update the existing endpoint to activate the new model.

E.

Update the existing endpoint to use the new endpoint configuration.

Question 94

A technology startup is using complex deep neural networks and GPU compute to recommend the company’s products to its existing customers based upon each customer’s habits and interactions. The solution currently pulls each dataset from an Amazon S3 bucket before loading the data into a TensorFlow model pulled from the company’s Git repository that runs locally. This job then runs for several hours while continually outputting its progress to the same S3 bucket. The job can be paused, restarted, and continued at any time in the event of a failure, and is run from a central queue.

Senior managers are concerned about the complexity of the solution’s resource management and the costs involved in repeating the process regularly. They ask for the workload to be automated so it runs once a week, starting Monday and completing by the close of business Friday.

Which architecture should be used to scale the solution at the lowest cost?

Options:

A.

Implement the solution using AWS Deep Learning Containers and run the container as a job using AWS Batch on a GPU-compatible Spot Instance

B.

Implement the solution using a low-cost GPU-compatible Amazon EC2 instance and use the AWS Instance Scheduler to schedule the task

C.

Implement the solution using AWS Deep Learning Containers, run the workload using AWS Fargate running on Spot Instances, and then schedule the task using the built-in task scheduler

D.

Implement the solution using Amazon ECS running on Spot Instances and schedule the task using the ECS service scheduler

Demo: 94 questions
Total 322 questions