Weekend Sale Limited Time 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: 70percent

Amazon Web Services MLS-C01 AWS Certified Machine Learning - Specialty Exam Practice Test

Demo: 98 questions
Total 330 questions

AWS Certified Machine Learning - Specialty Questions and Answers

Question 1

A Data Scientist is building a linear regression model and will use resulting p-values to evaluate the statistical significance of each coefficient. Upon inspection of the dataset, the Data Scientist discovers that most of the features are normally distributed. The plot of one feature in the dataset is shown in the graphic.

What transformation should the Data Scientist apply to satisfy the statistical assumptions of the linear

regression model?

Options:

A.

Exponential transformation

B.

Logarithmic transformation

C.

Polynomial transformation

D.

Sinusoidal transformation

Question 2

A data scientist for a medical diagnostic testing company has developed a machine learning (ML) model to identify patients who have a specific disease. The dataset that the scientist used to train the model is imbalanced. The dataset contains a large number of healthy patients and only a small number of patients who have the disease. The model should consider that patients who are incorrectly identified as positive for the disease will increase costs for the company.

Which metric will MOST accurately evaluate the performance of this model?

Options:

A.

Recall

B.

F1 score

C.

Accuracy

D.

Precision

Question 3

When submitting Amazon SageMaker training jobs using one of the built-in algorithms, which common parameters MUST be specified? (Select THREE.)

Options:

A.

The training channel identifying the location of training data on an Amazon S3 bucket.

B.

The validation channel identifying the location of validation data on an Amazon S3 bucket.

C.

The 1AM role that Amazon SageMaker can assume to perform tasks on behalf of the users.

D.

Hyperparameters in a JSON array as documented for the algorithm used.

E.

The Amazon EC2 instance class specifying whether training will be run using CPU or GPU.

F.

The output path specifying where on an Amazon S3 bucket the trained model will persist.

Question 4

A Mobile Network Operator is building an analytics platform to analyze and optimize a company's operations using Amazon Athena and Amazon S3

The source systems send data in CSV format in real lime The Data Engineering team wants to transform the data to the Apache Parquet format before storing it on Amazon S3

Which solution takes the LEAST effort to implement?

Options:

A.

Ingest .CSV data using Apache Kafka Streams on Amazon EC2 instances and use Kafka Connect S3 toserialize data as Parquet

B.

Ingest .CSV data from Amazon Kinesis Data Streams and use Amazon Glue to convert data into Parquet.

C.

Ingest .CSV data using Apache Spark Structured Streaming in an Amazon EMR cluster and use ApacheSpark to convert data into Parquet.

D.

Ingest .CSV data from Amazon Kinesis Data Streams and use Amazon Kinesis Data Firehose to convertdata into Parquet.

Question 5

A Machine Learning Specialist is given a structured dataset on the shopping habits of a company’s customer

base. The dataset contains thousands of columns of data and hundreds of numerical columns for each

customer. The Specialist wants to identify whether there are natural groupings for these columns across all

customers and visualize the results as quickly as possible.

What approach should the Specialist take to accomplish these tasks?

Options:

A.

Embed the numerical features using the t-distributed stochastic neighbor embedding (t-SNE) algorithm andcreate a scatter plot.

B.

Run k-means using the Euclidean distance measure for different values of k and create an elbow plot.

C.

Embed the numerical features using the t-distributed stochastic neighbor embedding (t-SNE) algorithm andcreate a line graph.

D.

Run k-means using the Euclidean distance measure for different values of k and create box plots for each numerical column within each cluster.

Question 6

A company uses sensors on devices such as motor engines and factory machines to measure parameters, temperature and pressure. The company wants to use the sensor data to predict equipment malfunctions and reduce services outages.

The Machine learning (ML) specialist needs to gather the sensors data to train a model to predict device malfunctions The ML spoctafst must ensure that the data does not contain outliers before training the ..el.

What can the ML specialist meet these requirements with the LEAST operational overhead?

Options:

A.

Load the data into an Amazon SagcMaker Studio notebook. Calculate the first and third quartile Use a SageMaker Data Wrangler data (low to remove only values that are outside of those quartiles.

B.

Use an Amazon SageMaker Data Wrangler bias report to find outliers in the dataset Use a Data Wrangler data flow to remove outliers based on the bias report.

C.

Use an Amazon SageMaker Data Wrangler anomaly detection visualization to find outliers in the dataset. Add a transformation to a Data Wrangler data flow to remove outliers.

D.

Use Amazon Lookout for Equipment to find and remove outliers from the dataset.

Question 7

A machine learning specialist is developing a proof of concept for government users whose primary concern is security. The specialist is using Amazon SageMaker to train a convolutional neural network (CNN) model for a photo classifier application. The specialist wants to protect the data so that it cannot be accessed and transferred to a remote host by malicious code accidentally installed on the training container.

Which action will provide the MOST secure protection?

Options:

A.

Remove Amazon S3 access permissions from the SageMaker execution role.

B.

Encrypt the weights of the CNN model.

C.

Encrypt the training and validation dataset.

D.

Enable network isolation for training jobs.

Question 8

A data scientist is training a text classification model by using the Amazon SageMaker built-in BlazingText algorithm. There are 5 classes in the dataset, with 300 samples for category A, 292 samples for category B, 240 samples for category C, 258 samples for category D, and 310 samples for category E.

The data scientist shuffles the data and splits off 10% for testing. After training the model, the data scientist generates confusion matrices for the training and test sets.

What could the data scientist conclude form these results?

Options:

A.

Classes C and D are too similar.

B.

The dataset is too small for holdout cross-validation.

C.

The data distribution is skewed.

D.

The model is overfitting for classes B and E.

Question 9

A data scientist is building a forecasting model for a retail company by using the most recent 5 years of sales records that are stored in a data warehouse. The dataset contains sales records for each of the company's stores across five commercial regions The data scientist creates a working dataset with StorelD. Region. Date, and Sales Amount as columns. The data scientist wants to analyze yearly average sales for each region. The scientist also wants to compare how each region performed compared to average sales across all commercial regions.

Which visualization will help the data scientist better understand the data trend?

Options:

A.

Create an aggregated dataset by using the Pandas GroupBy function to get average sales for each year for each store. Create a bar plot, faceted by year, of average sales for each store. Add an extra bar in each facet to represent average sales.

B.

Create an aggregated dataset by using the Pandas GroupBy function to get average sales for each year for each store. Create a bar plot, colored by region and faceted by year, of average sales for each store. Add a horizontal line in each facet to represent average sales.

C.

Create an aggregated dataset by using the Pandas GroupBy function to get average sales for each year for each region Create a bar plot of average sales for each region. Add an extra bar in each facet to represent average sales.

D.

Create an aggregated dataset by using the Pandas GroupBy function to get average sales for each year for each region Create a bar plot, faceted by year, of average sales for each region Add a horizontal line in each facet to represent average sales.

Question 10

A manufacturing company has structured and unstructured data stored in an Amazon S3 bucket A Machine Learning Specialist wants to use SQL to run queries on this data. Which solution requires the LEAST effort to be able to query this data?

Options:

A.

Use AWS Data Pipeline to transform the data and Amazon RDS to run queries.

B.

Use AWS Glue to catalogue the data and Amazon Athena to run queries

C.

Use AWS Batch to run ETL on the data and Amazon Aurora to run the quenes

D.

Use AWS Lambda to transform the data and Amazon Kinesis Data Analytics to run queries

Question 11

A company wants to segment a large group of customers into subgroups based on shared characteristics. The company’s data scientist is planning to use the Amazon SageMaker built-in k-means clustering algorithm for this task. The data scientist needs to determine the optimal number of subgroups (k) to use.

Which data visualization approach will MOST accurately determine the optimal value of k?

Options:

A.

Calculate the principal component analysis (PCA) components. Run the k-means clustering algorithm for a range of k by using only the first two PCA components. For each value of k, create a scatter plot with a different color for each cluster. The optimal value of k is the value where the clusters start to look reasonably separated.

B.

Calculate the principal component analysis (PCA) components. Create a line plot of the number of components against the explained variance. The optimal value of k is the number of PCA components after which the curve starts decreasing in a linear fashion.

C.

Create a t-distributed stochastic neighbor embedding (t-SNE) plot for a range of perplexity values. The optimal value of k is the value of perplexity, where the clusters start to look reasonably separated.

D.

Run the k-means clustering algorithm for a range of k. For each value of k, calculate the sum of squared errors (SSE). Plot a line chart of the SSE for each value of k. The optimal value of k is the point after which the curve starts decreasing in a linear fashion.

Question 12

A retail company is ingesting purchasing records from its network of 20,000 stores to Amazon S3 by using Amazon Kinesis Data Firehose. The company uses a small, server-based application in each store to send the data to AWS over the internet. The company uses this data to train a machine learning model that is retrained each day. The company's data science team has identified existing attributes on these records that could be combined to create an improved model.

Which change will create the required transformed records with the LEAST operational overhead?

Options:

A.

Create an AWS Lambda function that can transform the incoming records. Enable data transformation on the ingestion Kinesis Data Firehose delivery stream. Use the Lambda function as the invocation target.

B.

Deploy an Amazon EMR cluster that runs Apache Spark and includes the transformation logic. Use Amazon EventBridge (Amazon CloudWatch Events) to schedule an AWS Lambda function to launch the cluster each day and transform the records that accumulate in Amazon S3. Deliver the transformed records to Amazon S3.

C.

Deploy an Amazon S3 File Gateway in the stores. Update the in-store software to deliver data to the S3 File Gateway. Use a scheduled daily AWS Glue job to transform the data that the S3 File Gateway delivers to Amazon S3.

D.

Launch a fleet of Amazon EC2 instances that include the transformation logic. Configure the EC2 instances with a daily cron job to transform the records that accumulate in Amazon S3. Deliver the transformed records to Amazon S3.

Question 13

A financial services company wants to adopt Amazon SageMaker as its default data science environment. The company's data scientists run machine learning (ML) models on confidential financial data. The company is worried about data egress and wants an ML engineer to secure the environment.

Which mechanisms can the ML engineer use to control data egress from SageMaker? (Choose three.)

Options:

A.

Connect to SageMaker by using a VPC interface endpoint powered by AWS PrivateLink.

B.

Use SCPs to restrict access to SageMaker.

C.

Disable root access on the SageMaker notebook instances.

D.

Enable network isolation for training jobs and models.

E.

Restrict notebook presigned URLs to specific IPs used by the company.

F.

Protect data with encryption at rest and in transit. Use AWS Key Management Service (AWS KMS) to manage encryption keys.

Question 14

A financial company is trying to detect credit card fraud. The company observed that, on average, 2% of credit card transactions were fraudulent. A data scientist trained a classifier on a year's worth of credit card transactions data. The model needs to identify the fraudulent transactions (positives) from the regular ones (negatives). The company's goal is to accurately capture as many positives as possible.

Which metrics should the data scientist use to optimize the model? (Choose two.)

Options:

A.

Specificity

B.

False positive rate

C.

Accuracy

D.

Area under the precision-recall curve

E.

True positive rate

Question 15

A car company has dealership locations in multiple cities. The company uses a machine learning (ML) recommendation system to market cars to its customers.

An ML engineer trained the ML recommendation model on a dataset that includes multiple attributes about each car. The dataset includes attributes such as car brand, car type, fuel efficiency, and price.

The ML engineer uses Amazon SageMaker Data Wrangler to analyze and visualize data. The ML engineer needs to identify the distribution of car prices for a specific type of car.

Which type of visualization should the ML engineer use to meet these requirements?

Options:

A.

Use the SageMaker Data Wrangler scatter plot visualization to inspect the relationship between the car price and type of car.

B.

Use the SageMaker Data Wrangler quick model visualization to quickly evaluate the data and produce importance scores for the car price and type of car.

C.

Use the SageMaker Data Wrangler anomaly detection visualization to identify outliers for the specific features.

D.

Use the SageMaker Data Wrangler histogram visualization to inspect the range of values for the specific feature.

Question 16

A company has video feeds and images of a subway train station. The company wants to create a deep learning model that will alert the station manager if any passenger crosses the yellow safety line when there is no train in the station. The alert will be based on the video feeds. The company wants the model to detect the yellow line, the passengers who cross the yellow line, and the trains in the video feeds. This task requires labeling. The video data must remain confidential.

A data scientist creates a bounding box to label the sample data and uses an object detection model. However, the object detection model cannot clearly demarcate the yellow line, the passengers who cross the yellow line, and the trains.

Which labeling approach will help the company improve this model?

Options:

A.

Use Amazon Rekognition Custom Labels to label the dataset and create a custom Amazon Rekognition object detection model. Create a private workforce. Use Amazon Augmented AI (Amazon A2I) to review the low-confidence predictions and retrain the custom Amazon Rekognition model.

B.

Use an Amazon SageMaker Ground Truth object detection labeling task. Use Amazon Mechanical Turk as the labeling workforce.

C.

Use Amazon Rekognition Custom Labels to label the dataset and create a custom Amazon Rekognition object detection model. Create a workforce with a third-party AWS Marketplace vendor. Use Amazon Augmented AI (Amazon A2I) to review the low-confidence predictions and retrain the custom Amazon Rekognition model.

D.

Use an Amazon SageMaker Ground Truth semantic segmentation labeling task. Use a private workforce as the labeling workforce.

Question 17

A company wants to predict stock market price trends. The company stores stock market data each business day in Amazon S3 in Apache Parquet format. The company stores 20 GB of data each day for each stock code.

A data engineer must use Apache Spark to perform batch preprocessing data transformations quickly so the company can complete prediction jobs before the stock market opens the next day. The company plans to track more stock market codes and needs a way to scale the preprocessing data transformations.

Which AWS service or feature will meet these requirements with the LEAST development effort over time?

Options:

A.

AWS Glue jobs

B.

Amazon EMR cluster

C.

Amazon Athena

D.

AWS Lambda

Question 18

A Machine Learning Specialist is working with a large cybersecurily company that manages security events in real time for companies around the world The cybersecurity company wants to design a solution that will allow it to use machine learning to score malicious events as anomalies on the data as it is being ingested The company also wants be able to save the results in its data lake for later processing and analysis

What is the MOST efficient way to accomplish these tasks'?

Options:

A.

Ingest the data using Amazon Kinesis Data Firehose, and use Amazon Kinesis Data Analytics Random Cut Forest (RCF) for anomaly detection Then use Kinesis Data Firehose to stream the results to Amazon S3

B.

Ingest the data into Apache Spark Streaming using Amazon EMR. and use Spark MLlib with k-means to perform anomaly detection Then store the results in an Apache Hadoop Distributed File System (HDFS) using Amazon EMR with a replication factor of three as the data lake

C.

Ingest the data and store it in Amazon S3 Use AWS Batch along with the AWS Deep Learning AMIs to train a k-means model using TensorFlow on the data in Amazon S3.

D.

Ingest the data and store it in Amazon S3. Have an AWS Glue job that is triggered on demand transform the new data Then use the built-in Random Cut Forest (RCF) model within Amazon SageMaker to detect anomalies in the data

Question 19

Amazon Connect has recently been tolled out across a company as a contact call center The solution has been configured to store voice call recordings on Amazon S3

The content of the voice calls are being analyzed for the incidents being discussed by the call operators Amazon Transcribe is being used to convert the audio to text, and the output is stored on Amazon S3

Which approach will provide the information required for further analysis?

Options:

A.

Use Amazon Comprehend with the transcribed files to build the key topics

B.

Use Amazon Translate with the transcribed files to train and build a model for the key topics

C.

Use the AWS Deep Learning AMI with Gluon Semantic Segmentation on the transcribed files to train and build a model for the key topics

D.

Use the Amazon SageMaker k-Nearest-Neighbors (kNN) algorithm on the transcribed files to generate a word embeddings dictionary for the key topics

Question 20

A media company wants to deploy a machine learning (ML) model that uses Amazon SageMaker to recommend new articles to the company's readers. The company's readers are primarily located in a single city.

The company notices that the heaviest reader traffic predictably occurs early in the morning, after lunch, and again after work hours. There is very little traffic at other times of day. The media company needs to minimize the time required to deliver recommendations to its readers. The expected amount of data that the API call will return for inference is less than 4 MB.

Which solution will meet these requirements in the MOST cost-effective way?

Options:

A.

Real-time inference with auto scaling

B.

Serverless inference with provisioned concurrency

C.

Asynchronous inference

D.

A batch transform task

Question 21

IT leadership wants Jo transition a company's existing machine learning data storage environment to AWS as a temporary ad hoc solution The company currently uses a custom software process that heavily leverages SOL as a query language and exclusively stores generated csv documents for machine learning

The ideal state for the company would be a solution that allows it to continue to use the current workforce of SQL experts The solution must also support the storage of csv and JSON files, and be able to query over semi-structured data The following are high priorities for the company:

• Solution simplicity

• Fast development time

• Low cost

• High flexibility

What technologies meet the company's requirements?

Options:

A.

Amazon S3 and Amazon Athena

B.

Amazon Redshift and AWS Glue

C.

Amazon DynamoDB and DynamoDB Accelerator (DAX)

D.

Amazon RDS and Amazon ES

Question 22

A company's machine learning (ML) specialist is designing a scalable data storage solution for Amazon SageMaker. The company has an existing TensorFlow-based model that uses a train.py script. The model relies on static training data that is currently stored in TFRecord format.

What should the ML specialist do to provide the training data to SageMaker with the LEAST development overhead?

Options:

A.

Put the TFRecord data into an Amazon S3 bucket. Use AWS Glue or AWS Lambda to reformat the data to protobuf format and store the data in a second S3 bucket. Point the SageMaker training invocation to the second S3 bucket.

B.

Rewrite the train.py script to add a section that converts TFRecord data to protobuf format. Point the SageMaker training invocation to the local path of the data. Ingest the protobuf data instead of the TFRecord data.

C.

Use SageMaker script mode, and use train.py unchanged. Point the SageMaker training invocation to the local path of the data without reformatting the training data.

D.

Use SageMaker script mode, and use train.py unchanged. Put the TFRecord data into an Amazon S3 bucket. Point the SageMaker training invocation to the S3 bucket without reformatting the training data.

Question 23

A large company has developed a B1 application that generates reports and dashboards using data collected from various operational metrics The company wants to provide executives with an enhanced experience so they can use natural language to get data from the reports The company wants the executives to be able ask questions using written and spoken interlaces

Which combination of services can be used to build this conversational interface? (Select THREE)

Options:

A.

Alexa for Business

B.

Amazon Connect

C.

Amazon Lex

D.

Amazon Poly

E.

Amazon Comprehend

F.

Amazon Transcribe

Question 24

A company is using Amazon SageMaker to build a machine learning (ML) model to predict customer churn based on customer call transcripts. Audio files from customer calls are located in an on-premises VoIP system that has petabytes of recorded calls. The on-premises infrastructure has high-velocity networking and connects to the company's AWS infrastructure through a VPN connection over a 100 Mbps connection.

The company has an algorithm for transcribing customer calls that requires GPUs for inference. The company wants to store these transcriptions in an Amazon S3 bucket in the AWS Cloud for model development.

Which solution should an ML specialist use to deliver the transcriptions to the S3 bucket as quickly as possible?

Options:

A.

Order and use an AWS Snowball Edge Compute Optimized device with an NVIDIA Tesla module to run the transcription algorithm. Use AWS DataSync to send the resulting transcriptions to the transcription S3 bucket.

B.

Order and use an AWS Snowcone device with Amazon EC2 Inf1 instances to run the transcription algorithm Use AWS DataSync to send the resulting transcriptions to the transcription S3 bucket

C.

Order and use AWS Outposts to run the transcription algorithm on GPU-based Amazon EC2 instances. Store the resulting transcriptions in the transcription S3 bucket.

D.

Use AWS DataSync to ingest the audio files to Amazon S3. Create an AWS Lambda function to run the transcription algorithm on the audio files when they are uploaded to Amazon S3. Configure the function to write the resulting transcriptions to the transcription S3 bucket.

Question 25

A Machine Learning Specialist is building a logistic regression model that will predict whether or not a person will order a pizza. The Specialist is trying to build the optimal model with an ideal classification threshold.

What model evaluation technique should the Specialist use to understand how different classification thresholds will impact the model's performance?

Options:

A.

Receiver operating characteristic (ROC) curve

B.

Misclassification rate

C.

Root Mean Square Error (RM&)

D.

L1 norm

Question 26

A manufacturing company uses machine learning (ML) models to detect quality issues. The models use images that are taken of the company's product at the end of each production step. The company has thousands of machines at the production site that generate one image per second on average.

The company ran a successful pilot with a single manufacturing machine. For the pilot, ML specialists used an industrial PC that ran AWS IoT Greengrass with a long-running AWS Lambda function that uploaded the images to Amazon S3. The uploaded images invoked a Lambda function that was written in Python to perform inference by using an Amazon SageMaker endpoint that ran a custom model. The inference results were forwarded back to a web service that was hosted at the production site to prevent faulty products from being shipped.

The company scaled the solution out to all manufacturing machines by installing similarly configured industrial PCs on each production machine. However, latency for predictions increased beyond acceptable limits. Analysis shows that the internet connection is at its capacity limit.

How can the company resolve this issue MOST cost-effectively?

Options:

A.

Set up a 10 Gbps AWS Direct Connect connection between the production site and the nearest AWS Region. Use the Direct Connect connection to upload the images. Increase the size of the instances and the number of instances that are used by the SageMaker endpoint.

B.

Extend the long-running Lambda function that runs on AWS IoT Greengrass to compress the images and upload the compressed files to Amazon S3. Decompress the files by using a separate Lambda function that invokes the existing Lambda function to run the inference pipeline.

C.

Use auto scaling for SageMaker. Set up an AWS Direct Connect connection between the production site and the nearest AWS Region. Use the Direct Connect connection to upload the images.

D.

Deploy the Lambda function and the ML models onto the AWS IoT Greengrass core that is running on the industrial PCs that are installed on each machine. Extend the long-running Lambda function that runs on AWS IoT Greengrass to invoke the Lambda function with the captured images and run the inference on the edge component that forwards the results directly to the web service.

Question 27

A credit card company wants to identify fraudulent transactions in real time. A data scientist builds a machine learning model for this purpose. The transactional data is captured and stored in Amazon S3. The historic data is already labeled with two classes: fraud (positive) and fair transactions (negative). The data scientist removes all the missing data and builds a classifier by using the XGBoost algorithm in Amazon SageMaker. The model produces the following results:

• True positive rate (TPR): 0.700

• False negative rate (FNR): 0.300

• True negative rate (TNR): 0.977

• False positive rate (FPR): 0.023

• Overall accuracy: 0.949

Which solution should the data scientist use to improve the performance of the model?

Options:

A.

Apply the Synthetic Minority Oversampling Technique (SMOTE) on the minority class in the training dataset. Retrain the model with the updated training data.

B.

Apply the Synthetic Minority Oversampling Technique (SMOTE) on the majority class in the training dataset. Retrain the model with the updated training data.

C.

Undersample the minority class.

D.

Oversample the majority class.

Question 28

A company needs to develop a model that uses a machine learning (ML) model for risk analysis. An ML engineer needs to evaluate the contribution each feature of a training dataset makes to the prediction of the target variable before the ML engineer selects features.

How should the ML engineer predict the contribution of each feature?

Options:

A.

Use the Amazon SageMaker Data Wrangler multicollinearity measurement features and the principal component analysis (PCA) algorithm to calculate the variance of the dataset along multiple directions in the feature space.

B.

Use an Amazon SageMaker Data Wrangler quick model visualization to find feature importance scores that are between 0.5 and 1.

C.

Use the Amazon SageMaker Data Wrangler bias report to identify potential biases in the data related to feature engineering.

D.

Use an Amazon SageMaker Data Wrangler data flow to create and modify a data preparation pipeline. Manually add the feature scores.

Question 29

A data engineer needs to provide a team of data scientists with the appropriate dataset to run machine learning training jobs. The data will be stored in Amazon S3. The data engineer is obtaining the data from an Amazon Redshift database and is using join queries to extract a single tabular dataset. A portion of the schema is as follows:

...traction Timestamp (Timeslamp)

...JName(Varchar)

...JNo (Varchar)

Th data engineer must provide the data so that any row with a CardNo value of NULL is removed. Also, the TransactionTimestamp column must be separated into a TransactionDate column and a isactionTime column Finally, the CardName column must be renamed to NameOnCard.

The data will be extracted on a monthly basis and will be loaded into an S3 bucket. The solution must minimize the effort that is needed to set up infrastructure for the ingestion and transformation. The solution must be automated and must minimize the load on the Amazon Redshift cluster

Which solution meets these requirements?

Options:

A.

Set up an Amazon EMR cluster Create an Apache Spark job to read the data from the Amazon Redshift cluster and transform the data. Load the data into the S3 bucket. Schedule the job to run monthly.

B.

Set up an Amazon EC2 instance with a SQL client tool, such as SQL Workbench/J. to query the data from the Amazon Redshift cluster directly. Export the resulting dataset into a We. Upload the file into the S3 bucket. Perform these tasks monthly.

C.

Set up an AWS Glue job that has the Amazon Redshift cluster as the source and the S3 bucket as the destination Use the built-in transforms Filter, Map. and RenameField to perform the required transformations. Schedule the job to run monthly.

D.

Use Amazon Redshift Spectrum to run a query that writes the data directly to the S3 bucket. Create an AWS Lambda function to run the query monthly

Question 30

A Data Scientist is developing a binary classifier to predict whether a patient has a particular disease on a series of test results. The Data Scientist has data on 400 patients randomly selected from the population. The disease is seen in 3% of the population.

Which cross-validation strategy should the Data Scientist adopt?

Options:

A.

A k-fold cross-validation strategy with k=5

B.

A stratified k-fold cross-validation strategy with k=5

C.

A k-fold cross-validation strategy with k=5 and 3 repeats

D.

An 80/20 stratified split between training and validation

Question 31

A machine learning specialist is applying a linear least squares regression model to a dataset with 1,000 records and 50 features. Prior to training, the specialist notices that two features are perfectly linearly dependent.

Why could this be an issue for the linear least squares regression model?

Options:

A.

It could cause the backpropagation algorithm to fail during training.

B.

It could create a singular matrix during optimization, which fails to define a unique solution.

C.

It could modify the loss function during optimization, causing it to fail during training.

D.

It could introduce non-linear dependencies within the data, which could invalidate the linear assumptions of the model.

Question 32

A company offers an online shopping service to its customers. The company wants to enhance the site’s security by requesting additional information when customers access the site from locations that are different from their normal location. The company wants to update the process to call a machine learning (ML) model to determine when additional information should be requested.

The company has several terabytes of data from its existing ecommerce web servers containing the source IP addresses for each request made to the web server. For authenticated requests, the records also contain the login name of the requesting user.

Which approach should an ML specialist take to implement the new security feature in the web application?

Options:

A.

Use Amazon SageMaker Ground Truth to label each record as either a successful or failed access attempt. Use Amazon SageMaker to train a binary classification model using the factorization machines (FM) algorithm.

B.

Use Amazon SageMaker to train a model using the IP Insights algorithm. Schedule updates and retraining of the model using new log data nightly.

C.

Use Amazon SageMaker Ground Truth to label each record as either a successful or failed access attempt. Use Amazon SageMaker to train a binary classification model using the IP Insights algorithm.

D.

Use Amazon SageMaker to train a model using the Object2Vec algorithm. Schedule updates and retraining of the model using new log data nightly.

Question 33

A retail company intends to use machine learning to categorize new products A labeled dataset of current products was provided to the Data Science team The dataset includes 1 200 products The labeled dataset has 15 features for each product such as title dimensions, weight, and price Each product is labeled as belonging to one of six categories such as books, games, electronics, and movies.

Which model should be used for categorizing new products using the provided dataset for training?

Options:

A.

An XGBoost model where the objective parameter is set to multi: softmax

B.

A deep convolutional neural network (CNN) with a softmax activation function for the last layer

C.

A regression forest where the number of trees is set equal to the number of product categories

D.

A DeepAR forecasting model based on a recurrent neural network (RNN)

Question 34

A developer at a retail company is creating a daily demand forecasting model. The company stores the historical hourly demand data in an Amazon S3 bucket. However, the historical data does not include demand data for some hours.

The developer wants to verify that an autoregressive integrated moving average (ARIMA) approach will be a suitable model for the use case.

How should the developer verify the suitability of an ARIMA approach?

Options:

A.

Use Amazon SageMaker Data Wrangler. Import the data from Amazon S3. Impute hourly missing data. Perform a Seasonal Trend decomposition.

B.

Use Amazon SageMaker Autopilot. Create a new experiment that specifies the S3 data location. Choose ARIMA as the machine learning (ML) problem. Check the model performance.

C.

Use Amazon SageMaker Data Wrangler. Import the data from Amazon S3. Resample data by using the aggregate daily total. Perform a Seasonal Trend decomposition.

D.

Use Amazon SageMaker Autopilot. Create a new experiment that specifies the S3 data location. Impute missing hourly values. Choose ARIMA as the machine learning (ML) problem. Check the model performance.

Question 35

An office security agency conducted a successful pilot using 100 cameras installed at key locations within the main office. Images from the cameras were uploaded to Amazon S3 and tagged using Amazon Rekognition, and the results were stored in Amazon ES. The agency is now looking to expand the pilot into a full production system using thousands of video cameras in its office locations globally. The goal is to identify activities performed by non-employees in real time.

Which solution should the agency consider?

Options:

A.

Use a proxy server at each local office and for each camera, and stream the RTSP feed to a uniqueAmazon Kinesis Video Streams video stream. On each stream, use Amazon Rekognition Video and createa stream processor to detect faces from a collection of known employees, and alert when non-employeesare detected.

B.

Use a proxy server at each local office and for each camera, and stream the RTSP feed to a uniqueAmazon Kinesis Video Streams video stream. On each stream, use Amazon Rekognition Image to detectfaces from a collection of known employees and alert when non-employees are detected.

C.

Install AWS DeepLens cameras and use the DeepLens_Kinesis_Video module to stream video toAmazon Kinesis Video Streams for each camera. On each stream, use Amazon Rekognition Video andcreate a stream processor to detect faces from a collection on each stream, and alert when nonemployeesare detected.

D.

Install AWS DeepLens cameras and use the DeepLens_Kinesis_Video module to stream video toAmazon Kinesis Video Streams for each camera. On each stream, run an AWS Lambda function tocapture image fragments and then call Amazon Rekognition Image to detect faces from a collection ofknown employees, and alert when non-employees are detected.

Question 36

A large consumer goods manufacturer has the following products on sale:

• 34 different toothpaste variants

• 48 different toothbrush variants

• 43 different mouthwash variants

The entire sales history of all these products is available in Amazon S3. Currently, the company is using custom-built autoregressive integrated moving average (ARIMA) models to forecast demand for these products. The company wants to predict the demand for a new product that will soon be launched.

Which solution should a machine learning specialist apply?

Options:

A.

Train a custom ARIMA model to forecast demand for the new product.

B.

Train an Amazon SageMaker DeepAR algorithm to forecast demand for the new product.

C.

Train an Amazon SageMaker k-means clustering algorithm to forecast demand for the new product.

D.

Train a custom XGBoost model to forecast demand for the new product.

Question 37

A Machine Learning Specialist needs to be able to ingest streaming data and store it in Apache Parquet files for exploration and analysis. Which of the following services would both ingest and store this data in the correct format?

Options:

A.

AWSDMS

B.

Amazon Kinesis Data Streams

C.

Amazon Kinesis Data Firehose

D.

Amazon Kinesis Data Analytics

Question 38

A Machine Learning Specialist is building a model that will perform time series forecasting using Amazon SageMaker The Specialist has finished training the model and is now planning to perform load testing on the endpoint so they can configure Auto Scaling for the model variant

Which approach will allow the Specialist to review the latency, memory utilization, and CPU utilization during the load test"?

Options:

A.

Review SageMaker logs that have been written to Amazon S3 by leveraging Amazon Athena and Amazon OuickSight to visualize logs as they are being produced

B.

Generate an Amazon CloudWatch dashboard to create a single view for the latency, memory utilization, and CPU utilization metrics that are outputted by Amazon SageMaker

C.

Build custom Amazon CloudWatch Logs and then leverage Amazon ES and Kibana to query and visualize the data as it is generated by Amazon SageMaker

D.

Send Amazon CloudWatch Logs that were generated by Amazon SageMaker lo Amazon ES and use Kibana to query and visualize the log data.

Question 39

During mini-batch training of a neural network for a classification problem, a Data Scientist notices that training accuracy oscillates What is the MOST likely cause of this issue?

Options:

A.

The class distribution in the dataset is imbalanced

B.

Dataset shuffling is disabled

C.

The batch size is too big

D.

The learning rate is very high

Question 40

A company wants to create a data repository in the AWS Cloud for machine learning (ML) projects. The company wants to use AWS to perform complete ML lifecycles and wants to use Amazon S3 for the data storage. All of the company’s data currently resides on premises and is 40 ТВ in size.

The company wants a solution that can transfer and automatically update data between the on-premises object storage and Amazon S3. The solution must support encryption, scheduling, monitoring, and data integrity validation.

Which solution meets these requirements?

Options:

A.

Use the S3 sync command to compare the source S3 bucket and the destination S3 bucket. Determine which source files do not exist in the destination S3 bucket and which source files were modified.

B.

Use AWS Transfer for FTPS to transfer the files from the on-premises storage to Amazon S3.

C.

Use AWS DataSync to make an initial copy of the entire dataset. Schedule subsequent incremental transfers of changing data until the final cutover from on premises to AWS.

D.

Use S3 Batch Operations to pull data periodically from the on-premises storage. Enable S3 Versioning on the S3 bucket to protect against accidental overwrites.

Question 41

A machine learning specialist stores IoT soil sensor data in Amazon DynamoDB table and stores weather event data as JSON files in Amazon S3. The dataset in DynamoDB is 10 GB in size and the dataset in Amazon S3 is 5 GB in size. The specialist wants to train a model on this data to help predict soil moisture levels as a function of weather events using Amazon SageMaker.

Which solution will accomplish the necessary transformation to train the Amazon SageMaker model with the LEAST amount of administrative overhead?

Options:

A.

Launch an Amazon EMR cluster. Create an Apache Hive external table for the DynamoDB table and S3 data. Join the Hive tables and write the results out to Amazon S3.

B.

Crawl the data using AWS Glue crawlers. Write an AWS Glue ETL job that merges the two tables and writes the output to an Amazon Redshift cluster.

C.

Enable Amazon DynamoDB Streams on the sensor table. Write an AWS Lambda function that consumes the stream and appends the results to the existing weather files in Amazon S3.

D.

Crawl the data using AWS Glue crawlers. Write an AWS Glue ETL job that merges the two tables and writes the output in CSV format to Amazon S3.

Question 42

A finance company has collected stock return data for 5.000 publicly traded companies. A financial analyst has a dataset that contains 2.000 attributes for each company. The financial analyst wants to use Amazon SageMaker to identify the top 15 attributes that are most valuable to predict future stock returns.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Use the linear learner algorithm in SageMaker to train a linear regression model to predict the stock returns. Identify the most predictive features by ranking absolute coefficient values.

B.

Use random forest regression in SageMaker to train a model to predict the stock returns. Identify the most predictive features based on Gini importance scores.

C.

Use an Amazon SageMaker Data Wrangler quick model visualization to predict the stock returns. Identify the most predictive features based on the quick model's feature importance scores.

D.

Use Amazon SageMaker Autopilot to build a regression model to predict the stock returns. Identify the most predictive features based on an Amazon SageMaker Clarify report.

Question 43

A company has an ecommerce website with a product recommendation engine built in TensorFlow. The recommendation engine endpoint is hosted by Amazon SageMaker. Three compute-optimized instances support the expected peak load of the website.

Response times on the product recommendation page are increasing at the beginning of each month. Some users are encountering errors. The website receives the majority of its traffic between 8 AM and 6 PM on weekdays in a single time zone.

Which of the following options are the MOST effective in solving the issue while keeping costs to a minimum? (Choose two.)

Options:

A.

Configure the endpoint to use Amazon Elastic Inference (EI) accelerators.

B.

Create a new endpoint configuration with two production variants.

C.

Configure the endpoint to automatically scale with the Invocations Per Instance metric.

D.

Deploy a second instance pool to support a blue/green deployment of models.

E.

Reconfigure the endpoint to use burstable instances.

Question 44

A Data Scientist is building a model to predict customer churn using a dataset of 100 continuous numerical

features. The Marketing team has not provided any insight about which features are relevant for churn

prediction. The Marketing team wants to interpret the model and see the direct impact of relevant features on

the model outcome. While training a logistic regression model, the Data Scientist observes that there is a wide

gap between the training and validation set accuracy.

Which methods can the Data Scientist use to improve the model performance and satisfy the Marketing team’s

needs? (Choose two.)

Options:

A.

Add L1 regularization to the classifier

B.

Add features to the dataset

C.

Perform recursive feature elimination

D.

Perform t-distributed stochastic neighbor embedding (t-SNE)

E.

Perform linear discriminant analysis

Question 45

A company operates an amusement park. The company wants to collect, monitor, and store real-time traffic data at several park entrances by using strategically placed cameras. The company's security team must be able to immediately access the data for viewing. Stored data must be indexed and must be accessible to the company's data science team.

Which solution will meet these requirements MOST cost-effectively?

Options:

A.

Use Amazon Kinesis Video Streams to ingest, index, and store the data. Use the built-in integration with Amazon Rekognition for viewing by the security team.

B.

Use Amazon Kinesis Video Streams to ingest, index, and store the data. Use the built-in HTTP live streaming (HLS) capability for viewing by the security team.

C.

Use Amazon Rekognition Video and the GStreamer plugin to ingest the data for viewing by the security team. Use Amazon Kinesis Data Streams to index and store the data.

D.

Use Amazon Data Firehose to ingest, index, and store the data. Use the built-in HTTP live streaming (HLS) capability for viewing by the security team.

Question 46

An agency collects census information within a country to determine healthcare and social program needs by province and city. The census form collects responses for approximately 500 questions from each citizen

Which combination of algorithms would provide the appropriate insights? (Select TWO )

Options:

A.

The factorization machines (FM) algorithm

B.

The Latent Dirichlet Allocation (LDA) algorithm

C.

The principal component analysis (PCA) algorithm

D.

The k-means algorithm

E.

The Random Cut Forest (RCF) algorithm

Question 47

A Machine Learning Specialist wants to determine the appropriate SageMaker Variant Invocations Per Instance setting for an endpoint automatic scaling configuration. The Specialist has performed a load test on a single instance and determined that peak requests per second (RPS) without service degradation is about 20 RPS As this is the first deployment, the Specialist intends to set the invocation safety factor to 0 5

Based on the stated parameters and given that the invocations per instance setting is measured on a per-minute basis, what should the Specialist set as the sageMaker variant invocations Per instance setting?

Options:

A.

10

B.

30

C.

600

D.

2,400

Question 48

A machine learning (ML) specialist is administering a production Amazon SageMaker endpoint with model monitoring configured. Amazon SageMaker Model Monitor detects violations on the SageMaker endpoint, so the ML specialist retrains the model with the latest dataset. This dataset is statistically representative of the current production traffic. The ML specialist notices that even after deploying the new SageMaker model and running the first monitoring job, the SageMaker endpoint still has violations.

What should the ML specialist do to resolve the violations?

Options:

A.

Manually trigger the monitoring job to re-evaluate the SageMaker endpoint traffic sample.

B.

Run the Model Monitor baseline job again on the new training set. Configure Model Monitor to use the new baseline.

C.

Delete the endpoint and recreate it with the original configuration.

D.

Retrain the model again by using a combination of the original training set and the new training set.

Question 49

A machine learning (ML) specialist wants to secure calls to the Amazon SageMaker Service API. The specialist has configured Amazon VPC with a VPC interface endpoint for the Amazon SageMaker Service API and is attempting to secure traffic from specific sets of instances and IAM users. The VPC is configured with a single public subnet.

Which combination of steps should the ML specialist take to secure the traffic? (Choose two.)

Options:

A.

Add a VPC endpoint policy to allow access to the IAM users.

B.

Modify the users' IAM policy to allow access to Amazon SageMaker Service API calls only.

C.

Modify the security group on the endpoint network interface to restrict access to the instances.

D.

Modify the ACL on the endpoint network interface to restrict access to the instances.

E.

Add a SageMaker Runtime VPC endpoint interface to the VPC.

Question 50

A data scientist uses Amazon SageMaker Data Wrangler to define and perform transformations and feature engineering on historical data. The data scientist saves the transformations to SageMaker Feature Store.

The historical data is periodically uploaded to an Amazon S3 bucket. The data scientist needs to transform the new historic data and add it to the online feature store The data scientist needs to prepare the .....historic data for training and inference by using native integrations.

Which solution will meet these requirements with the LEAST development effort?

Options:

A.

Use AWS Lambda to run a predefined SageMaker pipeline to perform the transformations on each new dataset that arrives in the S3 bucket.

B.

Run an AWS Step Functions step and a predefined SageMaker pipeline to perform the transformations on each new dalaset that arrives in the S3 bucket

C.

Use Apache Airflow to orchestrate a set of predefined transformations on each new dataset that arrives in the S3 bucket.

D.

Configure Amazon EventBridge to run a predefined SageMaker pipeline to perform the transformations when a new data is detected in the S3 bucket.

Question 51

A sports analytics company is providing services at a marathon. Each runner in the marathon will have their race ID printed as text on the front of their shirt. The company needs to extract race IDs from images of the runners.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Use Amazon Rekognition.

B.

Use a custom convolutional neural network (CNN).

C.

Use the Amazon SageMaker Object Detection algorithm.

D.

Use Amazon Lookout for Vision.

Question 52

A machine learning (ML) specialist needs to solve a binary classification problem for a marketing dataset. The ML specialist must maximize the Area Under the ROC Curve (AUC) of the algorithm by training an XGBoost algorithm. The ML specialist must find values for the eta, alpha, min_child_weight, and max_depth hyperparameter that will generate the most accurate model.  

Which approach will meet these requirements with the LEAST operational overhead?  

Options:

A.

Use a bootstrap script to install scikit-learn on an Amazon EMR cluster. Deploy the EMR cluster. Apply k-fold cross-validation methods to the algorithm.

B.

Deploy Amazon SageMaker prebuilt Docker images that have scikit-learn installed. Apply k-fold cross-validation methods to the algorithm.

C.

Use Amazon SageMaker automatic model tuning (AMT). Specify a range of values for each hyperparameter.

D.

Subscribe to an AUC algorithm that is on AWS Marketplace. Specify a range of values for each hyperparameter.

Question 53

A Machine Learning Specialist has created a deep learning neural network model that performs well on the training data but performs poorly on the test data.

Which of the following methods should the Specialist consider using to correct this? (Select THREE.)

Options:

A.

Decrease regularization.

B.

Increase regularization.

C.

Increase dropout.

D.

Decrease dropout.

E.

Increase feature combinations.

F.

Decrease feature combinations.

Question 54

A machine learning (ML) specialist uploads a dataset to an Amazon S3 bucket that is protected by server-side encryption with AWS KMS keys (SSE-KMS). The ML specialist needs to ensure that an Amazon SageMaker notebook instance can read the dataset that is in Amazon S3.

Which solution will meet these requirements?

Options:

A.

Define security groups to allow all HTTP inbound and outbound traffic. Assign the security groups to the SageMaker notebook instance.

B.

Configure the SageMaker notebook instance to have access to the VPC. Grant permission in the AWS Key Management Service (AWS KMS) key policy to the notebook's VPC.

C.

Assign an IAM role that provides S3 read access for the dataset to the SageMaker notebook. Grant permission in the KMS key policy to the 1AM role.

D.

Assign the same KMS key that encrypts the data in Amazon S3 to the SageMaker notebook instance.

Question 55

A growing company has a business-critical key performance indicator (KPI) for the uptime of a machine learning (ML) recommendation system. The company is using Amazon SageMaker hosting services to develop a recommendation model in a single Availability Zone within an AWS Region.

A machine learning (ML) specialist must develop a solution to achieve high availability. The solution must have a recovery time objective (RTO) of 5 minutes.

Which solution will meet these requirements with the LEAST effort?

Options:

A.

Deploy multiple instances for each endpoint in a VPC that spans at least two Regions.

B.

Use the SageMaker auto scaling feature for the hosted recommendation models.

C.

Deploy multiple instances for each production endpoint in a VPC that spans at least two subnets that are in a second Availability Zone.

D.

Frequently generate backups of the production recommendation model. Deploy the backups in a second Region.

Question 56

An obtain relator collects the following data on customer orders: demographics, behaviors, location, shipment progress, and delivery time. A data scientist joins all the collected datasets. The result is a single dataset that includes 980 variables.

The data scientist must develop a machine learning (ML) model to identify groups of customers who are likely to respond to a marketing campaign.

Which combination of algorithms should the data scientist use to meet this requirement? (Select TWO.)

Options:

A.

Latent Dirichlet Allocation (LDA)

B.

K-means

C.

Se mantic feg mentation

D.

Principal component analysis (PCA)

E.

Factorization machines (FM)

Question 57

A Machine Learning Specialist wants to bring a custom algorithm to Amazon SageMaker. The Specialist

implements the algorithm in a Docker container supported by Amazon SageMaker.

How should the Specialist package the Docker container so that Amazon SageMaker can launch the training

correctly?

Options:

A.

Modify the bash_profile file in the container and add a bash command to start the training program

B.

Use CMD config in the Dockerfile to add the training program as a CMD of the image

C.

Configure the training program as an ENTRYPOINT named train

D.

Copy the training program to directory /opt/ml/train

Question 58

A Machine Learning Specialist is designing a system for improving sales for a company. The objective is to use the large amount of information the company has on users' behavior and product preferences to predict which products users would like based on the users' similarity to other users.

What should the Specialist do to meet this objective?

Options:

A.

Build a content-based filtering recommendation engine with Apache Spark ML on Amazon EMR.

B.

Build a collaborative filtering recommendation engine with Apache Spark ML on Amazon EMR.

C.

Build a model-based filtering recommendation engine with Apache Spark ML on Amazon EMR.

D.

Build a combinative filtering recommendation engine with Apache Spark ML on Amazon EMR.

Question 59

A machine learning (ML) specialist at a retail company must build a system to forecast the daily sales for one of the company's stores. The company provided the ML specialist with sales data for this store from the past 10 years. The historical dataset includes the total amount of sales on each day for the store. Approximately 10% of the days in the historical dataset are missing sales data.

The ML specialist builds a forecasting model based on the historical dataset. The specialist discovers that the model does not meet the performance standards that the company requires.

Which action will MOST likely improve the performance for the forecasting model?

Options:

A.

Aggregate sales from stores in the same geographic area.

B.

Apply smoothing to correct for seasonal variation.

C.

Change the forecast frequency from daily to weekly.

D.

Replace missing values in the dataset by using linear interpolation.

Question 60

A Machine Learning Specialist receives customer data for an online shopping website. The data includes demographics, past visits, and locality information. The Specialist must develop a machine learning approach to identify the customer shopping patterns, preferences and trends to enhance the website for better service and smart recommendations.

Which solution should the Specialist recommend?

Options:

A.

Latent Dirichlet Allocation (LDA) for the given collection of discrete data to identify patterns in the customer database.

B.

A neural network with a minimum of three layers and random initial weights to identify patterns in the customer database

C.

Collaborative filtering based on user interactions and correlations to identify patterns in the customer database

D.

Random Cut Forest (RCF) over random subsamples to identify patterns in the customer database

Question 61

A machine learning (ML) specialist must develop a classification model for a financial services company. A domain expert provides the dataset, which is tabular with 10,000 rows and 1,020 features. During exploratory data analysis, the specialist finds no missing values and a small percentage of duplicate rows. There are correlation scores of > 0.9 for 200 feature pairs. The mean value of each feature is similar to its 50th percentile.

Which feature engineering strategy should the ML specialist use with Amazon SageMaker?

Options:

A.

Apply dimensionality reduction by using the principal component analysis (PCA) algorithm.

B.

Drop the features with low correlation scores by using a Jupyter notebook.

C.

Apply anomaly detection by using the Random Cut Forest (RCF) algorithm.

D.

Concatenate the features with high correlation scores by using a Jupyter notebook.

Question 62

A car company is developing a machine learning solution to detect whether a car is present in an image. The image dataset consists of one million images. Each image in the dataset is 200 pixels in height by 200 pixels in width. Each image is labeled as either having a car or not having a car.

Which architecture is MOST likely to produce a model that detects whether a car is present in an image with the highest accuracy?

Options:

A.

Use a deep convolutional neural network (CNN) classifier with the images as input. Include a linear output layer that outputs the probability that an image contains a car.

B.

Use a deep convolutional neural network (CNN) classifier with the images as input. Include a softmax output layer that outputs the probability that an image contains a car.

C.

Use a deep multilayer perceptron (MLP) classifier with the images as input. Include a linear output layer that outputs the probability that an image contains a car.

D.

Use a deep multilayer perceptron (MLP) classifier with the images as input. Include a softmax output layer that outputs the probability that an image contains a car.

Question 63

A Machine Learning Specialist is using Amazon Sage Maker to host a model for a highly available customer-facing application.

The Specialist has trained a new version of the model, validated it with historical data, and now wants to deploy it to production To limit any risk of a negative customer experience, the Specialist wants to be able to monitor the model and roll it back, if needed

What is the SIMPLEST approach with the LEAST risk to deploy the model and roll it back, if needed?

Options:

A.

Create a SageMaker endpoint and configuration for the new model version. Redirect production traffic to the new endpoint by updating the client configuration. Revert traffic to the last version if the model does not perform as expected.

B.

Create a SageMaker endpoint and configuration for the new model version. Redirect production traffic to the new endpoint by using a load balancer Revert traffic to the last version if the model does not perform as expected.

C.

Update the existing SageMaker endpoint to use a new configuration that is weighted to send 5% of the traffic to the new variant. Revert traffic to the last version by resetting the weights if the model does not perform as expected.

D.

Update the existing SageMaker endpoint to use a new configuration that is weighted to send 100% of the traffic to the new variant Revert traffic to the last version by resetting the weights if the model does not perform as expected.

Question 64

A data engineer at a bank is evaluating a new tabular dataset that includes customer data. The data engineer will use the customer data to create a new model to predict customer behavior. After creating a correlation matrix for the variables, the data engineer notices that many of the 100 features are highly correlated with each other.

Which steps should the data engineer take to address this issue? (Choose two.)

Options:

A.

Use a linear-based algorithm to train the model.

B.

Apply principal component analysis (PCA).

C.

Remove a portion of highly correlated features from the dataset.

D.

Apply min-max feature scaling to the dataset.

E.

Apply one-hot encoding category-based variables.

Question 65

A retail company is using Amazon Personalize to provide personalized product recommendations for its customers during a marketing campaign. The company sees a significant increase in sales of recommended items to existing customers immediately after deploying a new solution version, but these sales decrease a short time after deployment. Only historical data from before the marketing campaign is available for training.

How should a data scientist adjust the solution?

Options:

A.

Use the event tracker in Amazon Personalize to include real-time user interactions.

B.

Add user metadata and use the HRNN-Metadata recipe in Amazon Personalize.

C.

Implement a new solution using the built-in factorization machines (FM) algorithm in Amazon SageMaker.

D.

Add event type and event value fields to the interactions dataset in Amazon Personalize.

Question 66

A media company with a very large archive of unlabeled images, text, audio, and video footage wishes to index its assets to allow rapid identification of relevant content by the Research team. The company wants to use machine learning to accelerate the efforts of its in-house researchers who have limited machine learning expertise.

Which is the FASTEST route to index the assets?

Options:

A.

Use Amazon Rekognition, Amazon Comprehend, and Amazon Transcribe to tag data into distinct categories/classes.

B.

Create a set of Amazon Mechanical Turk Human Intelligence Tasks to label all footage.

C.

Use Amazon Transcribe to convert speech to text. Use the Amazon SageMaker Neural Topic Model (NTM) and Object Detection algorithms to tag data into distinct categories/classes.

D.

Use the AWS Deep Learning AMI and Amazon EC2 GPU instances to create custom models for audio transcription and topic modeling, and use object detection to tag data into distinct categories/classes.

Question 67

An agricultural company is interested in using machine learning to detect specific types of weeds in a 100-acre grassland field. Currently, the company uses tractor-mounted cameras to capture multiple images of the field as 10 × 10 grids. The company also has a large training dataset that consists of annotated images of popular weed classes like broadleaf and non-broadleaf docks.

The company wants to build a weed detection model that will detect specific types of weeds and the location of each type within the field. Once the model is ready, it will be hosted on Amazon SageMaker endpoints. The model will perform real-time inferencing using the images captured by the cameras.

Which approach should a Machine Learning Specialist take to obtain accurate predictions?

Options:

A.

Prepare the images in RecordIO format and upload them to Amazon S3. Use Amazon SageMaker to train, test, and validate the model using an image classification algorithm to categorize images into various weed classes.

B.

Prepare the images in Apache Parquet format and upload them to Amazon S3. Use Amazon SageMaker to train, test, and validate the model using an object-detection single-shot multibox detector (SSD) algorithm.

C.

Prepare the images in RecordIO format and upload them to Amazon S3. Use Amazon SageMaker to train, test, and validate the model using an object-detection single-shot multibox detector (SSD) algorithm.

D.

Prepare the images in Apache Parquet format and upload them to Amazon S3. Use Amazon SageMaker to train, test, and validate the model using an image classification algorithm to categorize images into various weed classes.

Question 68

A machine learning (ML) specialist uploads 5 TB of data to an Amazon SageMaker Studio environment. The ML specialist performs initial data cleansing. Before the ML specialist begins to train a model, the ML specialist needs to create and view an analysis report that details potential bias in the uploaded data.

Which combination of actions will meet these requirements with the LEAST operational overhead? (Choose two.)

Options:

A.

Use SageMaker Clarify to automatically detect data bias

B.

Turn on the bias detection option in SageMaker Ground Truth to automatically analyze data features.

C.

Use SageMaker Model Monitor to generate a bias drift report.

D.

Configure SageMaker Data Wrangler to generate a bias report.

E.

Use SageMaker Experiments to perform a data check

Question 69

A web-based company wants to improve its conversion rate on its landing page Using a large historical dataset of customer visits, the company has repeatedly trained a multi-class deep learning network algorithm on Amazon SageMaker However there is an overfitting problem training data shows 90% accuracy in predictions, while test data shows 70% accuracy only

The company needs to boost the generalization of its model before deploying it into production to maximize conversions of visits to purchases

Which action is recommended to provide the HIGHEST accuracy model for the company's test and validation data?

Options:

A.

Increase the randomization of training data in the mini-batches used in training.

B.

Allocate a higher proportion of the overall data to the training dataset

C.

Apply L1 or L2 regularization and dropouts to the training.

D.

Reduce the number of layers and units (or neurons) from the deep learning network.

Question 70

A Machine Learning Specialist is configuring automatic model tuning in Amazon SageMaker

When using the hyperparameter optimization feature, which of the following guidelines should be followed to improve optimization?

Choose the maximum number of hyperparameters supported by

Options:

A.

Amazon SageMaker to search the largest number of combinations possible

B.

Specify a very large hyperparameter range to allow Amazon SageMaker to cover every possible value.

C.

Use log-scaled hyperparameters to allow the hyperparameter space to be searched as quickly as possible

D.

Execute only one hyperparameter tuning job at a time and improve tuning through successive rounds of experiments

Question 71

Example Corp has an annual sale event from October to December. The company has sequential sales data from the past 15 years and wants to use Amazon ML to predict the sales for this year's upcoming event. Which method should Example Corp use to split the data into a training dataset and evaluation dataset?

Options:

A.

Pre-split the data before uploading to Amazon S3

B.

Have Amazon ML split the data randomly.

C.

Have Amazon ML split the data sequentially.

D.

Perform custom cross-validation on the data

Question 72

A company is using Amazon Polly to translate plaintext documents to speech for automated company announcements However company acronyms are being mispronounced in the current documents How should a Machine Learning Specialist address this issue for future documents?

Options:

A.

Convert current documents to SSML with pronunciation tags

B.

Create an appropriate pronunciation lexicon.

C.

Output speech marks to guide in pronunciation

D.

Use Amazon Lex to preprocess the text files for pronunciation

Question 73

A machine learning (ML) engineer is integrating a production model with a customer metadata repository for real-time inference. The repository is hosted in Amazon SageMaker Feature Store. The engineer wants to retrieve only the latest version of the customer metadata record for a single customer at a time.

Which solution will meet these requirements?

Options:

A.

Use the SageMaker Feature Store BatchGetRecord API with the record identifier. Filter to find the latest record.

B.

Create an Amazon Athena query to retrieve the data from the feature table.

C.

Create an Amazon Athena query to retrieve the data from the feature table. Use the write_time value to find the latest record.

D.

Use the SageMaker Feature Store GetRecord API with the record identifier.

Question 74

The displayed graph is from a foresting model for testing a time series.

Considering the graph only, which conclusion should a Machine Learning Specialist make about the behavior of the model?

Options:

A.

The model predicts both the trend and the seasonality well.

B.

The model predicts the trend well, but not the seasonality.

C.

The model predicts the seasonality well, but not the trend.

D.

The model does not predict the trend or the seasonality well.

Question 75

A Machine Learning Specialist is creating a new natural language processing application that processes a dataset comprised of 1 million sentences The aim is to then run Word2Vec to generate embeddings of the sentences and enable different types of predictions -

Here is an example from the dataset

"The quck BROWN FOX jumps over the lazy dog "

Which of the following are the operations the Specialist needs to perform to correctly sanitize and prepare the data in a repeatable manner? (Select THREE)

Options:

A.

Perform part-of-speech tagging and keep the action verb and the nouns only

B.

Normalize all words by making the sentence lowercase

C.

Remove stop words using an English stopword dictionary.

D.

Correct the typography on "quck" to "quick."

E.

One-hot encode all words in the sentence

F.

Tokenize the sentence into words.

Question 76

A company needs to deploy a chatbot to answer common questions from customers. The chatbot must base its answers on company documentation.

Which solution will meet these requirements with the LEAST development effort?

Options:

A.

Index company documents by using Amazon Kendra. Integrate the chatbot with Amazon Kendra by using the Amazon Kendra Query API operation to answer customer questions.

B.

Train a Bidirectional Attention Flow (BiDAF) network based on past customer questions and company documents. Deploy the model as a real-time Amazon SageMaker endpoint. Integrate the model with the chatbot by using the SageMaker Runtime InvokeEndpoint API operation to answer customer questions.

C.

Train an Amazon SageMaker BlazingText model based on past customer questions and company documents. Deploy the model as a real-time SageMaker endpoint. Integrate the model with the chatbot by using the SageMaker Runtime InvokeEndpoint API operation to answer customer questions.

D.

Index company documents by using Amazon OpenSearch Service. Integrate the chatbot with OpenSearch Service by using the OpenSearch Service k-nearest neighbors (k-NN) Query API operation to answer customer questions.

Question 77

A company’s data scientist has trained a new machine learning model that performs better on test data than the company’s existing model performs in the production environment. The data scientist wants to replace the existing model that runs on an Amazon SageMaker endpoint in the production environment. However, the company is concerned that the new model might not work well on the production environment data.

The data scientist needs to perform A/B testing in the production environment to evaluate whether the new model performs well on production environment data.

Which combination of steps must the data scientist take to perform the A/B testing? (Choose two.)

Options:

A.

Create a new endpoint configuration that includes a production variant for each of the two models.

B.

Create a new endpoint configuration that includes two target variants that point to different endpoints.

C.

Deploy the new model to the existing endpoint.

D.

Update the existing endpoint to activate the new model.

E.

Update the existing endpoint to use the new endpoint configuration.

Question 78

A company that runs an online library is implementing a chatbot using Amazon Lex to provide book recommendations based on category. This intent is fulfilled by an AWS Lambda function that queries an Amazon DynamoDB table for a list of book titles, given a particular category. For testing, there are only three categories implemented as the custom slot types: "comedy," "adventure,” and "documentary.”

A machine learning (ML) specialist notices that sometimes the request cannot be fulfilled because Amazon Lex cannot understand the category spoken by users with utterances such as "funny," "fun," and "humor." The ML specialist needs to fix the problem without changing the Lambda code or data in DynamoDB.

How should the ML specialist fix the problem?

Options:

A.

Add the unrecognized words in the enumeration values list as new values in the slot type.

B.

Create a new custom slot type, add the unrecognized words to this slot type as enumeration values, and use this slot type for the slot.

C.

Use the AMAZON.SearchQuery built-in slot types for custom searches in the database.

D.

Add the unrecognized words as synonyms in the custom slot type.

Question 79

A data scientist is developing a pipeline to ingest streaming web traffic data. The data scientist needs to implement a process to identify unusual web traffic patterns as part of the pipeline. The patterns will be used downstream for alerting and incident response. The data scientist has access to unlabeled historic data to use, if needed.

The solution needs to do the following:

Calculate an anomaly score for each web traffic entry.

Adapt unusual event identification to changing web patterns over time.

Which approach should the data scientist implement to meet these requirements?

Options:

A.

Use historic web traffic data to train an anomaly detection model using the Amazon SageMaker Random Cut Forest (RCF) built-in model. Use an Amazon Kinesis Data Stream to process the incoming web traffic data. Attach a preprocessing AWS Lambda function to perform data enrichment by calling the RCF model to calculate the anomaly score for each record.

B.

Use historic web traffic data to train an anomaly detection model using the Amazon SageMaker built-in XGBoost model. Use an Amazon Kinesis Data Stream to process the incoming web traffic data. Attach a preprocessing AWS Lambda function to perform data enrichment by calling the XGBoost model to calculate the anomaly score for each record.

C.

Collect the streaming data using Amazon Kinesis Data Firehose. Map the delivery stream as an input source for Amazon Kinesis Data Analytics. Write a SQL query to run in real time against the streaming data with the k-Nearest Neighbors (kNN) SQL extension to calculate anomaly scores for each record using a tumbling window.

D.

Collect the streaming data using Amazon Kinesis Data Firehose. Map the delivery stream as an input source for Amazon Kinesis Data Analytics. Write a SQL query to run in real time against the streaming data with the Amazon Random Cut Forest (RCF) SQL extension to calculate anomaly scores for each record using a sliding window.

Question 80

A company wants to predict the sale prices of houses based on available historical sales data. The target

variable in the company’s dataset is the sale price. The features include parameters such as the lot size, living

area measurements, non-living area measurements, number of bedrooms, number of bathrooms, year built,

and postal code. The company wants to use multi-variable linear regression to predict house sale prices.

Which step should a machine learning specialist take to remove features that are irrelevant for the analysis

and reduce the model’s complexity?

Options:

A.

Plot a histogram of the features and compute their standard deviation. Remove features with high variance.

B.

Plot a histogram of the features and compute their standard deviation. Remove features with low variance.

C.

Build a heatmap showing the correlation of the dataset against itself. Remove features with low mutual correlation scores.

D.

Run a correlation check of all features against the target variable. Remove features with low target variable correlation scores.

Question 81

A company is using a machine learning (ML) model to recommend products to customers. An ML specialist wants to analyze the data for the most popular recommendations in four dimensions.

The ML specialist will visualize the first two dimensions as coordinates. The third dimension will be visualized as color. The ML specialist will use size to represent the fourth dimension in the visualization.

Which solution will meet these requirements?

Options:

A.

Use the Amazon SageMaker Data Wrangler bar chart feature. Use Group By to represent the third and fourth dimensions.

B.

Use the Amazon SageMaker Canvas box plot visualization. Use color and fill pattern to represent the third and fourth dimensions.

C.

Use the Amazon SageMaker Data Wrangler histogram feature. Use color and fill pattern to represent the third and fourth dimensions.

D.

Use the Amazon SageMaker Canvas scatter plot visualization. Use scatter point size and color to represent the third and fourth dimensions.

Question 82

A Machine Learning Specialist kicks off a hyperparameter tuning job for a tree-based ensemble model using Amazon SageMaker with Area Under the ROC Curve (AUC) as the objective metric This workflow will eventually be deployed in a pipeline that retrains and tunes hyperparameters each night to model click-through on data that goes stale every 24 hours

With the goal of decreasing the amount of time it takes to train these models, and ultimately to decrease costs, the Specialist wants to reconfigure the input hyperparameter range(s)

Which visualization will accomplish this?

Options:

A.

A histogram showing whether the most important input feature is Gaussian.

B.

A scatter plot with points colored by target variable that uses (-Distributed Stochastic Neighbor Embedding (I-SNE) to visualize the large number of input variables in an easier-to-read dimension.

C.

A scatter plot showing (he performance of the objective metric over each training iteration

D.

A scatter plot showing the correlation between maximum tree depth and the objective metric.

Question 83

A Machine Learning Specialist is using Apache Spark for pre-processing training data As part of the Spark pipeline, the Specialist wants to use Amazon SageMaker for training a model and hosting it Which of the following would the Specialist do to integrate the Spark application with SageMaker? (Select THREE)

Options:

A.

Download the AWS SDK for the Spark environment

B.

Install the SageMaker Spark library in the Spark environment.

C.

Use the appropriate estimator from the SageMaker Spark Library to train a model.

D.

Compress the training data into a ZIP file and upload it to a pre-defined Amazon S3 bucket.

E.

Use the sageMakerModel. transform method to get inferences from the model hosted in SageMaker

F.

Convert the DataFrame object to a CSV file, and use the CSV file as input for obtaining inferences from SageMaker.

Question 84

A Machine Learning Specialist is using an Amazon SageMaker notebook instance in a private subnet of a corporate VPC. The ML Specialist has important data stored on the Amazon SageMaker notebook instance's Amazon EBS volume, and needs to take a snapshot of that EBS volume. However the ML Specialist cannot find the Amazon SageMaker notebook instance's EBS volume or Amazon EC2 instance within the VPC.

Why is the ML Specialist not seeing the instance visible in the VPC?

Options:

A.

Amazon SageMaker notebook instances are based on the EC2 instances within the customer account, butthey run outside of VPCs.

B.

Amazon SageMaker notebook instances are based on the Amazon ECS service within customer accounts.

C.

Amazon SageMaker notebook instances are based on EC2 instances running within AWS serviceaccounts.

D.

Amazon SageMaker notebook instances are based on AWS ECS instances running within AWS serviceaccounts.

Question 85

A machine learning (ML) developer for an online retailer recently uploaded a sales dataset into Amazon SageMaker Studio. The ML developer wants to obtain importance scores for each feature of the dataset. The ML developer will use the importance scores to feature engineer the dataset.

Which solution will meet this requirement with the LEAST development effort?

Options:

A.

Use SageMaker Data Wrangler to perform a Gini importance score analysis.

B.

Use a SageMaker notebook instance to perform principal component analysis (PCA).

C.

Use a SageMaker notebook instance to perform a singular value decomposition analysis.

D.

Use the multicollinearity feature to perform a lasso feature selection to perform an importance scores analysis.

Question 86

A manufacturing company asks its Machine Learning Specialist to develop a model that classifies defective parts into one of eight defect types. The company has provided roughly 100000 images per defect type for training During the injial training of the image classification model the Specialist notices that the validation accuracy is 80%, while the training accuracy is 90% It is known that human-level performance for this type of image classification is around 90%

What should the Specialist consider to fix this issue1?

Options:

A.

A longer training time

B.

Making the network larger

C.

Using a different optimizer

D.

Using some form of regularization

Question 87

A data scientist is using an Amazon SageMaker notebook instance and needs to securely access data stored in a specific Amazon S3 bucket.

How should the data scientist accomplish this?

Options:

A.

Add an S3 bucket policy allowing GetObject, PutObject, and ListBucket permissions to the Amazon SageMaker notebook ARN as principal.

B.

Encrypt the objects in the S3 bucket with a custom AWS Key Management Service (AWS KMS) key that only the notebook owner has access to.

C.

Attach the policy to the IAM role associated with the notebook that allows GetObject, PutObject, and ListBucket operations to the specific S3 bucket.

D.

Use a script in a lifecycle configuration to configure the AWS CLI on the instance with an access key ID and secret.

Question 88

A company decides to use Amazon SageMaker to develop machine learning (ML) models. The company will host SageMaker notebook instances in a VPC. The company stores training data in an Amazon S3 bucket. Company security policy states that SageMaker notebook instances must not have internet connectivity.

Which solution will meet the company's security requirements?

Options:

A.

Connect the SageMaker notebook instances that are in the VPC by using AWS Site-to-Site VPN to encrypt all internet-bound traffic. Configure VPC flow logs. Monitor all network traffic to detect and prevent any malicious activity.

B.

Configure the VPC that contains the SageMaker notebook instances to use VPC interface endpoints to establish connections for training and hosting. Modify any existing security groups that are associated with the VPC interface endpoint to only allow outbound connections for training and hosting.

C.

Create an IAM policy that prevents access to the internet. Apply the IAM policy to an IAM role. Assign the IAM role to the SageMaker notebook instances in addition to any IAM roles that are already assigned to the instances.

D.

Create VPC security groups to prevent all incoming and outgoing traffic. Assign the security groups to the SageMaker notebook instances.

Question 89

A data scientist at a financial services company used Amazon SageMaker to train and deploy a model that predicts loan defaults. The model analyzes new loan applications and predicts the risk of loan default. To train the model, the data scientist manually extracted loan data from a database. The data scientist performed the model training and deployment steps in a Jupyter notebook that is hosted on SageMaker Studio notebooks. The model's prediction accuracy is decreasing over time. Which combination of slept in the MOST operationally efficient way for the data scientist to maintain the model's accuracy? (Select TWO.)

Options:

A.

Use SageMaker Pipelines to create an automated workflow that extracts fresh data, trains the model, and deploys a new version of the model.

B.

Configure SageMaker Model Monitor with an accuracy threshold to check for model drift. Initiate an Amazon CloudWatch alarm when the threshold is exceeded. Connect the workflow in SageMaker Pipelines with the CloudWatch alarm to automatically initiate retraining.

C.

Store the model predictions in Amazon S3 Create a daily SageMaker Processing job that reads the predictions from Amazon S3, checks for changes in model prediction accuracy, and sends an email notification if a significant change is detected.

D.

Rerun the steps in the Jupyter notebook that is hosted on SageMaker Studio notebooks to retrain the model and redeploy a new version of the model.

E.

Export the training and deployment code from the SageMaker Studio notebooks into a Python script. Package the script into an Amazon Elastic Container Service (Amazon ECS) task that an AWS Lambda function can initiate.

Question 90

A Machine Learning Specialist is building a prediction model for a large number of features using linear models, such as linear regression and logistic regression During exploratory data analysis the Specialist observes that many features are highly correlated with each other This may make the model unstable

What should be done to reduce the impact of having such a large number of features?

Options:

A.

Perform one-hot encoding on highly correlated features

B.

Use matrix multiplication on highly correlated features.

C.

Create a new feature space using principal component analysis (PCA)

D.

Apply the Pearson correlation coefficient

Question 91

A retail chain has been ingesting purchasing records from its network of 20,000 stores to Amazon S3 using Amazon Kinesis Data Firehose To support training an improved machine learning model, training records will require new but simple transformations, and some attributes will be combined The model needs lo be retrained daily

Given the large number of stores and the legacy data ingestion, which change will require the LEAST amount of development effort?

Options:

A.

Require that the stores to switch to capturing their data locally on AWS Storage Gateway for loading into Amazon S3 then use AWS Glue to do the transformation

B.

Deploy an Amazon EMR cluster running Apache Spark with the transformation logic, and have the cluster run each day on the accumulating records in Amazon S3, outputting new/transformed records to Amazon S3

C.

Spin up a fleet of Amazon EC2 instances with the transformation logic, have them transform the data records accumulating on Amazon S3, and output the transformed records to Amazon S3.

D.

Insert an Amazon Kinesis Data Analytics stream downstream of the Kinesis Data Firehouse stream that transforms raw record attributes into simple transformed values using SQL.

Question 92

A Data Engineer needs to build a model using a dataset containing customer credit card information.

How can the Data Engineer ensure the data remains encrypted and the credit card information is secure?

Options:

A.

Use a custom encryption algorithm to encrypt the data and store the data on an Amazon SageMakerinstance in a VPC. Use the SageMaker DeepAR algorithm to randomize the credit card numbers.

B.

Use an IAM policy to encrypt the data on the Amazon S3 bucket and Amazon Kinesis to automaticallydiscard credit card numbers and insert fake credit card numbers.

C.

Use an Amazon SageMaker launch configuration to encrypt the data once it is copied to the SageMakerinstance in a VPC. Use the SageMaker principal component analysis (PCA) algorithm to reduce the lengthof the credit card numbers.

D.

Use AWS KMS to encrypt the data on Amazon S3 and Amazon SageMaker, and redact the credit card numbers from the customer data with AWS Glue.

Question 93

A bank has collected customer data for 10 years in CSV format. The bank stores the data in an on-premises server. A data science team wants to use Amazon SageMaker to build and train a machine learning (ML) model to predict churn probability. The team will use the historical data. The data scientists want to perform data transformations quickly and to generate data insights before the team builds a model for production.

Which solution will meet these requirements with the LEAST development effort?

Options:

A.

Upload the data into the SageMaker Data Wrangler console directly. Perform data transformations and generate insights within Data Wrangler.

B.

Upload the data into an Amazon S3 bucket. Allow SageMaker to access the data that is in the bucket. Import the data from the S3 bucket into SageMaker Data Wrangler. Perform data transformations and generate insights within Data Wrangler.

C.

Upload the data into the SageMaker Data Wrangler console directly. Allow SageMaker and Amazon QuickSight to access the data that is in an Amazon S3 bucket. Perform data transformations in Data Wrangler and save the transformed data into a second S3 bucket. Use QuickSight to generate data insights.

D.

Upload the data into an Amazon S3 bucket. Allow SageMaker to access the data that is in the bucket. Import the data from the bucket into SageMaker Data Wrangler. Perform data transformations in Data Wrangler. Save the data into a second S3 bucket. Use a SageMaker Studio notebook to generate data insights.

Question 94

A machine learning (ML) specialist is building a credit score model for a financial institution. The ML specialist has collected data for the previous 3 years of transactions and third-party metadata that is related to the transactions.

After the ML specialist builds the initial model, the ML specialist discovers that the model has low accuracy for both the training data and the test data. The ML specialist needs to improve the accuracy of the model.

Which solutions will meet this requirement? (Select TWO.)

Options:

A.

Increase the number of passes on the existing training data. Perform more hyperparameter tuning.

B.

Increase the amount of regularization. Use fewer feature combinations.

C.

Add new domain-specific features. Use more complex models.

D.

Use fewer feature combinations. Decrease the number of numeric attribute bins.

E.

Decrease the amount of training data examples. Reduce the number of passes on the existing training data.

Question 95

A manufacturing company has a production line with sensors that collect hundreds of quality metrics. The company has stored sensor data and manual inspection results in a data lake for several months. To automate quality control, the machine learning team must build an automated mechanism that determines whether the produced goods are good quality, replacement market quality, or scrap quality based on the manual inspection results.

Which modeling approach will deliver the MOST accurate prediction of product quality?

Options:

A.

Amazon SageMaker DeepAR forecasting algorithm

B.

Amazon SageMaker XGBoost algorithm

C.

Amazon SageMaker Latent Dirichlet Allocation (LDA) algorithm

D.

A convolutional neural network (CNN) and ResNet

Question 96

A company is running an Amazon SageMaker training job that will access data stored in its Amazon S3 bucket A compliance policy requires that the data never be transmitted across the internet How should the company set up the job?

Options:

A.

Launch the notebook instances in a public subnet and access the data through the public S3 endpoint

B.

Launch the notebook instances in a private subnet and access the data through a NAT gateway

C.

Launch the notebook instances in a public subnet and access the data through a NAT gateway

D.

Launch the notebook instances in a private subnet and access the data through an S3 VPC endpoint.

Question 97

A manufacturer of car engines collects data from cars as they are being driven The data collected includes timestamp, engine temperature, rotations per minute (RPM), and other sensor readings The company wants to predict when an engine is going to have a problem so it can notify drivers in advance to get engine maintenance The engine data is loaded into a data lake for training

Which is the MOST suitable predictive model that can be deployed into production'?

Options:

A.

Add labels over time to indicate which engine faults occur at what time in the future to turn this into a supervised learning problem Use a recurrent neural network (RNN) to train the model to recognize when an engine might need maintenance for a certain fault.

B.

This data requires an unsupervised learning algorithm Use Amazon SageMaker k-means to cluster the data

C.

Add labels over time to indicate which engine faults occur at what time in the future to turn this into a supervised learning problem Use a convolutional neural network (CNN) to train the model to recognize when an engine might need maintenance for a certain fault.

D.

This data is already formulated as a time series Use Amazon SageMaker seq2seq to model the time series.

Question 98

A technology startup is using complex deep neural networks and GPU compute to recommend the company’s products to its existing customers based upon each customer’s habits and interactions. The solution currently pulls each dataset from an Amazon S3 bucket before loading the data into a TensorFlow model pulled from the company’s Git repository that runs locally. This job then runs for several hours while continually outputting its progress to the same S3 bucket. The job can be paused, restarted, and continued at any time in the event of a failure, and is run from a central queue.

Senior managers are concerned about the complexity of the solution’s resource management and the costs involved in repeating the process regularly. They ask for the workload to be automated so it runs once a week, starting Monday and completing by the close of business Friday.

Which architecture should be used to scale the solution at the lowest cost?

Options:

A.

Implement the solution using AWS Deep Learning Containers and run the container as a job using AWS Batch on a GPU-compatible Spot Instance

B.

Implement the solution using a low-cost GPU-compatible Amazon EC2 instance and use the AWS Instance Scheduler to schedule the task

C.

Implement the solution using AWS Deep Learning Containers, run the workload using AWS Fargate running on Spot Instances, and then schedule the task using the built-in task scheduler

D.

Implement the solution using Amazon ECS running on Spot Instances and schedule the task using the ECS service scheduler

Demo: 98 questions
Total 330 questions