Labour Day Special Limited Time 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: 70percent

Amazon Web Services ANS-C01 AWS Certified Advanced Networking- Specialty Exam Practice Test

Demo: 32 questions
Total 110 questions

AWS Certified Advanced Networking- Specialty Questions and Answers

Question 1

A company uses a 4 Gbps AWS Direct Connect dedicated connection with a link aggregation group (LAG) bundle to connect to five VPCs that are deployed in the us-east-1 Region. Each VPC serves a different business unit and uses its own private VIF for connectivity to the on-premises environment. Users are reporting slowness when they access resources that are hosted on AWS.

A network engineer finds that there are sudden increases in throughput and that the Direct Connect connection becomes saturated at the same time for about an hour each business day. The company wants to know which business unit is causing the sudden increase in throughput. The network engineer must find out this information and implement a solution to resolve the problem.

Which solution will meet these requirements?

Options:

A.

Review the Amazon CloudWatch metrics for VirtualInterfaceBpsEgress and VirtualInterfaceBpsIngress to determine which VIF is sending the highest throughput during the period in which slowness is observed. Create a new 10 Gbps dedicated connection. Shift traffic from the existing dedicated connection to the new dedicated connection.

B.

Review the Amazon CloudWatch metrics for VirtualInterfaceBpsEgress and VirtualInterfaceBpsIngress to determine which VIF is sending the highest throughput during the period in which slowness is observed. Upgrade the bandwidth of the existing dedicated connection to 10 Gbps.

C.

Review the Amazon CloudWatch metrics for ConnectionBpsIngress and ConnectionPpsEgress to determine which VIF is sending the highest throughput during the period in which slowness is observed. Upgrade the existing dedicated connection to a 5 Gbps hosted connection.

D.

Review the Amazon CloudWatch metrics for ConnectionBpsIngress and ConnectionPpsEgress to determine which VIF is sending the highest throughput during the period in which slowness is observed. Create a new 10 Gbps dedicated connection. Shift traffic from the existing dedicated connection to the new dedicated connection.

Question 2

A company is deploying third-party firewall appliances for traffic inspection and NAT capabilities in its VPC. The VPC is configured with private subnets and public subnets. The company needs to deploy the firewall appliances behind a load balancer.

Which architecture will meet these requirements MOST cost-effectively?

Options:

A.

Deploy a Gateway Load Balancer with the firewall appliances as targets. Configure the firewall appliances with a single network interface in a private subnet. Use a NAT gateway to send the traffic to the internet after inspection.

B.

Deploy a Gateway Load Balancer with the firewall appliances as targets. Configure the firewall appliances with two network interfaces: one network interface in a private subnet and another network interface in a public subnet. Use the NAT functionality on the firewall appliances to send the traffic to the internet after inspection.

C.

Deploy a Network Load Balancer with the firewall appliances as targets. Configure the firewall appliances with a single network interface in a private subnet. Use a NAT gateway to send the traffic to the internet after inspection.

D.

Deploy a Network Load Balancer with the firewall appliances as targets. Configure the firewall appliances with two network interfaces: one network interface in a private subnet and another network interface in a public subnet. Use the NAT functionality on the firewall appliances to send the traffic to the internet after inspection.

Question 3

A company has several production applications across different accounts in the AWS Cloud. The company operates from the us-east-1 Region only. Only certain partner companies can access the applications. The applications are running on Amazon EC2 instances that are in an Auto Scaling group behind an Application Load Balancer (ALB). The EC2 instances are in private subnets and allow traffic only from the ALB. The ALB is in a public subnet and allows inbound traffic only from partner network IP address ranges over port 80.

When the company adds a new partner, the company must allow the IP address range of the partner network in the security group that is associated with the ALB in each account. A network engineer must implement a solution to centrally manage the partner network IP address ranges.

Which solution will meet these requirements in the MOST operationally efficient manner?

Options:

A.

Create an Amazon DynamoDB table to maintain all IP address ranges and security groups that need to be updated. Update the DynamoDB table with the new IP address range when the company adds a new partner. Invoke an AWS Lambda function to read new IP address ranges and security groups from the DynamoDB table to update the security groups. Deploy this solution in all accounts.

B.

Create a new prefix list. Add all allowed IP address ranges to the prefix list. Use Amazon EventBridge (Amazon CloudWatch Events) rules to invoke an AWS Lambda function to update security groups whenever a new IP address range is added to the prefix list. Deploy this solution in all accounts.

C.

Create a new prefix list. Add all allowed IP address ranges to the prefix list. Share the prefix list across different accounts by using AWS Resource Access Manager (AWS RAM). Update security groups to use the prefix list instead of the partner IP address range. Update the prefix list with the new IP address range when the company adds a new partner.

D.

Create an Amazon S3 bucket to maintain all IP address ranges and security groups that need to be updated. Update the S3 bucket with the new IP address range when the company adds a new partner. Invoke an AWS Lambda function to read new IP address ranges and security groups from the S3 bucket to update the security groups. Deploy this solution in all accounts.

Question 4

A company's network engineer is designing an active-passive connection to AWS from two on-premises data centers. The company has set up AWS Direct Connect connections between the on-premises data centers and AWS. From each location, the company is using a transit VIF that connects to a Direct Connect gateway that is associated with a transit gateway.

The network engineer must ensure that traffic from AWS to the data centers is routed first to the primary data center. The traffic should be routed to the failover data center only in the case of an outage.

Which solution will meet these requirements?

Options:

A.

Set the BGP community tag for all prefixes from the primary data center to 7224:7100. Set the BGP community tag for all prefixes from the failover data center to 7224:7300

B.

Set the BGP community tag for all prefixes from the primary data center to 7224:7300. Set the BGP community tag for all prefixes from the failover data center to 7224:7100

C.

Set the BGP community tag for all prefixes from the primary data center to 7224:9300. Set the BGP community tag for all prefixes from the failover data center to 7224:9100

D.

Set the BGP community tag for all prefixes from the primary data center to 7224:9100. Set the BGP community tag for all prefixes from the failover data center to 7224:9300

Question 5

An organization is replacing a tape backup system with a storage gateway. there is currently no connectivity to AWS. Initial testing is needed.

What connection option should the organization use to get up and running at minimal cost?

Options:

A.

Use an internet connection.

B.

Set up an AWS VPN connection.

C.

Provision an AWS Direct Connection private virtual interface.

D.

Provision a Direct Connect public virtual interface.

Question 6

A company uses Amazon Route 53 for its DNS needs. The company's security team wants to update the DNS infrastructure to provide the most recent security posture.

The security team has configured DNS Security Extensions (DNSSEC) for the domain. The security team wants a network engineer to explain who is responsible for the

rotation of DNSSEC keys.

Which explanation should the network administrator provide to the security team?

Options:

A.

AWS rotates the zone-signing key (ZSK). The company rotates the key-signing key (KSK).

B.

The company rotates the zone-signing key (ZSK) and the key-signing key (KSK).

C.

AWS rotates the AWS Key Management Service (AWS KMS) key and the key-signing key (KSK).

D.

The company rotates the AWS Key Management Service (AWS KMS) key. AWS rotates the key-signing key (KSK).

Question 7

An AWS CloudFormation template is being used to create a VPC peering connection between two existing operational VPCs, each belonging to a different AWS account. All necessary components in the ‘Remote’ (receiving) account are already in place.

The template below creates the VPC peering connection in the Originating account. It contains these components:

AWSTemplateFormation Version: 2010-09-09

Parameters:

Originating VCId:

Type: String

RemoteVPCId:

Type: String

RemoteVPCAccountId:

Type: String

Resources:

newVPCPeeringConnection:

Type: ‘AWS::EC2::VPCPeeringConnection’

Properties:

VpcdId: !Ref OriginatingVPCId

PeerVpcId: !Ref RemoteVPCId

PeerOwnerId: !Ref RemoteVPCAccountId

Which additional AWS CloudFormation components are necessary in the Originating account to create an operational cross-account VPC peering connection with AWS CloudFormation? (Select two.)

Options:

A.

Resources:NewEC2SecurityGroup:Type: AWS::EC2::SecurityGroup

B.

Resources:NetworkInterfaceToRemoteVPC:Type: “AWS::EC2NetworkInterface”

C.

Resources:newEC2Route:Type: AWS::EC2::Route

D.

Resources:VPCGatewayToRemoteVPC:Type: “AWS::EC2::VPCGatewayAttachment”

E.

Resources:newVPCPeeringConnection:Type: ‘AWS::EC2VPCPeeringConnection’PeerRoleArn: !Ref PeerRoleArn

Question 8

A company hosts a web application on Amazon EC2 instances behind an Application Load Balancer (ALB). The ALB is the origin in an Amazon CloudFront distribution. The company wants to implement a custom authentication system that will provide a token for its authenticated customers.

The web application must ensure that the GET/POST requests come from authenticated customers before it delivers the content. A network engineer must design a solution that gives the web application the ability to identify authorized customers.

What is the MOST operationally efficient solution that meets these requirements?

Options:

A.

Use the ALB to inspect the authorized token inside the GET/POST request payload. Use an AWS Lambda function to insert a customized header to inform the web application of an authenticated customer request.

B.

Integrate AWS WAF with the ALB to inspect the authorized token inside the GET/POST request payload. Configure the ALB listener to insert a customized header to inform the web application of an authenticated customer request.

C.

Use an AWS Lambda@Edge function to inspect the authorized token inside the GET/POST request payload. Use the Lambda@Edge function also to insert a customized header to inform the web application of an authenticated customer request.

D.

Set up an EC2 instance that has a third-party packet inspection tool to inspect the authorized token inside the GET/POST request payload. Configure the tool to insert a customized header to inform the web application of an authenticated customer request.

Question 9

A company uses a 1 Gbps AWS Direct Connect connection to connect its AWS environment to its on-premises data center. The connection provides employees with access to an application VPC that is hosted on AWS. Many remote employees use a company-provided VPN to connect to the data center. These employees are reporting slowness when they access the application during business hours. On-premises users have started to report similar slowness while they are in the office.

The company plans to build an additional application on AWS. On-site and remote employees will use the additional application. After the deployment of this additional application, the company will need 20% more bandwidth than the company currently uses. With the increased usage, the company wants to add resiliency to the AWS connectivity. A network engineer must review the current implementation and must make improvements within a limited budget.

What should the network engineer do to meet these requirements MOST cost-effectively?

Options:

A.

Set up a new 1 Gbps Direct Connect dedicated connection to accommodate the additional traffic load from remote employees and the additional application. Create a link aggregation group (LAG).

B.

Deploy an AWS Site-to-Site VPN connection to the application VPC. Configure the on-premises routing for the remote employees to connect to the Site-to-Site VPN connection.

C.

Deploy Amazon Workspaces into the application VPInstruct the remote employees to connect to Workspaces.

D.

Replace the existing 1 Gbps Direct Connect connection with two new 2 Gbps Direct Connect hosted connections. Create an AWS Client VPN endpoint in the application VPC. Instruct the remote employees to connect to the Client VPN endpoint.

Question 10

A company is planning to create a service that requires encryption in transit. The traffic must not be decrypted between the client and the backend of the service. The company will implement the service by using the gRPC protocol over TCP port 443. The service will scale up to thousands of simultaneous connections. The backend of the service will be hosted on an Amazon Elastic Kubernetes Service (Amazon EKS) duster with the Kubernetes Cluster Autoscaler and the Horizontal Pod Autoscaler configured. The company needs to use mutual TLS for two-way authentication between the client and the backend.

Which solution will meet these requirements?

Options:

A.

Install the AWS Load Balancer Controller for Kubernetes. Using that controller, configure a Network Load Balancer with a TCP listener on port 443 to forward traffic to the IP addresses of the backend service Pods.

B.

Install the AWS Load Balancer Controller for Kubernetes. Using that controller, configure an Application Load Balancer with an HTTPS listener on port 443 to forward traffic to the IP addresses of the backend service Pods.

C.

Create a target group. Add the EKS managed node group's Auto Scaling group as a target Create an Application Load Balancer with an HTTPS listener on port 443 to forward traffic to the target group.

D.

Create a target group. Add the EKS managed node group’s Auto Scaling group as a target. Create a Network Load Balancer with a TLS listener on port 443 to forward traffic to the target group.

Question 11

An ecommerce company is hosting a web application on Amazon EC2 instances to handle continuously changing customer demand. The EC2 instances are part of an Auto Scaling group. The company wants to implement a solution to distribute traffic from customers to the EC2 instances. The company must encrypt all traffic at all stages between the customers and the application servers. No decryption at intermediate points is allowed.

Which solution will meet these requirements?

Options:

A.

Create an Application Load Balancer (ALB). Add an HTTPS listener to the ALB. Configure the Auto Scaling group to register instances with the ALB's target group.

B.

Create an Amazon CloudFront distribution. Configure the distribution with a custom SSL/TLS certificate. Set the Auto Scaling group as the distribution's origin.

C.

Create a Network Load Balancer (NLB). Add a TCP listener to the NLB. Configure the Auto Scaling group to register instances with the NLB's target group.

D.

Create a Gateway Load Balancer (GLB). Configure the Auto Scaling group to register instances with the GLB's target group.

Question 12

A global delivery company is modernizing its fleet management system. The company has several business units. Each business unit designs and maintains applications that are hosted in its own AWS account in separate application VPCs in the same AWS Region. Each business unit's applications are designed to get data from a central shared services VPC.

The company wants the network connectivity architecture to provide granular security controls. The architecture also must be able to scale as more business units consume data from the central shared services VPC in the future.

Which solution will meet these requirements in the MOST secure manner?

Options:

A.

Create a central transit gateway. Create a VPC attachment to each application VPC. Provide full mesh connectivity between all the VPCs by using the transit gateway.

B.

Create VPC peering connections between the central shared services VPC and each application VPC in each business unit's AWS account.

C.

Create VPC endpoint services powered by AWS PrivateLink in the central shared services VPCreate VPC endpoints in each application VPC.

D.

Create a central transit VPC with a VPN appliance from AWS Marketplace. Create a VPN attachment from each VPC to the transit VPC. Provide full mesh connectivity among all the VPCs.

Question 13

A company is building its website on AWS in a single VPC. The VPC has public subnets and private subnets in two Availability Zones. The website has static content such as images. The company is using Amazon S3 to store the content.

The company has deployed a fleet of Amazon EC2 instances as web servers in a private subnet. The EC2 instances are in an Auto Scaling group behind an Application Load Balancer. The EC2 instances will serve traffic, and they must pull content from an S3 bucket to render the webpages. The company is using AWS Direct Connect with a public VIF for on-premises connectivity to the S3 bucket.

A network engineer notices that traffic between the EC2 instances and Amazon S3 is routing through a NAT gateway. As traffic increases, the company's costs are increasing. The network engineer needs to change the connectivity to reduce the NAT gateway costs that result from the traffic between the EC2 instances and Amazon S3.

Which solution will meet these requirements?

Options:

A.

Create a Direct Connect private VIF. Migrate the traffic from the public VIF to the private VIF.

B.

Create an AWS Site-to-Site VPN tunnel over the existing public VIF.

C.

Implement interface VPC endpoints for Amazon S3. Update the VPC route table.

D.

Implement gateway VPC endpoints for Amazon S3. Update the VPC route table.

Question 14

A network engineer has deployed an Amazon EC2 instance in a private subnet in a VPC. The VPC has no public subnet. The EC2 instance hosts application code that sends messages to an Amazon Simple Queue Service (Amazon SQS) queue. The subnet has the default network ACL with no modification applied. The EC2 instance has the default security group with no modification applied.

The SQS queue is not receiving messages.

Which of the following are possible causes of this problem? (Choose two.)

Options:

A.

The EC2 instance is not attached to an IAM role that allows write operations to Amazon SQS.

B.

The security group is blocking traffic to the IP address range used by Amazon SQS

C.

There is no interface VPC endpoint configured for Amazon SQS

D.

The network ACL is blocking return traffic from Amazon SQS

E.

There is no route configured in the subnet route table for the IP address range used by Amazon SQS

Question 15

A company plans to deploy a two-tier web application to a new VPC in a single AWS Region. The company has configured the VPC with an internet gateway and four subnets. Two of the subnets are public and have default routes that point to the internet gateway. Two of the subnets are private and share a route table that does not have a default route.

The application will run on a set of Amazon EC2 instances that will be deployed behind an external Application Load Balancer. The EC2 instances must not be directly accessible from the internet. The application will use an Amazon S3 bucket in the same Region to store data. The application will invoke S3 GET API operations and S3 PUT API operations from the EC2 instances. A network engineer must design a VPC architecture that minimizes data transfer cost.

Which solution will meet these requirements?

Options:

A.

Deploy the EC2 instances in the public subnets. Create an S3 interface endpoint in the VPC. Modify the application configuration to use the S3 endpoint-specific DNS hostname.

B.

Deploy the EC2 instances in the private subnets. Create a NAT gateway in the VPC. Create default routes in the private subnets to the NAT gateway. Connect to Amazon S3 by using the NAT gateway.

C.

Deploy the EC2 instances in the private subnets. Create an S3 gateway endpoint in the VPSpecify die route table of the private subnets during endpoint creation to create routes to Amazon S3.

D.

Deploy the EC2 instances in the private subnets. Create an S3 interface endpoint in the VPC. Modify the application configuration to use the S3 endpoint-specific DNS hostname.

Question 16

A company has deployed a web application on AWS. The web application uses an Application Load Balancer (ALB) across multiple Availability Zones. The targets of the ALB are AWS Lambda functions. The web application also uses Amazon CloudWatch metrics for monitoring.

Users report that parts of the web application are not loading properly. A network engineer needs to troubleshoot the problem. The network engineer enables access logging for the ALB.

What should the network engineer do next to determine which errors the ALB is receiving?

Options:

A.

Send the logs to Amazon CloudWatch Logs. Review the ALB logs in CloudWatch Insights to determine which error messages the ALB is receiving.

B.

Configure the Amazon S3 bucket destination. Use Amazon Athena to determine which error messages the ALB is receiving.

C.

Configure the Amazon S3 bucket destination. After Amazon CloudWatch Logs pulls the ALB logs from the S3 bucket automatically, review the logs in CloudWatch Logs to determine which error messages the ALB is receiving.

D.

Send the logs to Amazon CloudWatch Logs. Use the Amazon Athena CloudWatch Connector to determine which error messages the ALB is receiving.

Question 17

A company operates its IT services through a multi-site hybrid infrastructure. The company deploys resources on AWS in the us-east-1 Region and in the eu-west-2 Region. The company also deploys resources in its own data centers that are located in the United States (US) and in the United Kingdom (UK). In both AWS Regions, the company uses a transit gateway to connect 15 VPCs to each other. The company has created a transit gateway peering connection between the two transit gateways. The VPC CIDR blocks do not overlap with each other or with IP addresses used within the data centers. The VPC CIDR prefixes can also be aggregated either on a Regional level or for the company's entire AWS environment.

The data centers are connected to each other by a private WAN connection. IP routing information is exchanged dynamically through Interior BGP (iBGP) sessions. The data centers maintain connectivity to AWS through one AWS Direct Connect connection in the US and one Direct Connect connection in the UK. Each Direct Connect connection is terminated on a Direct Connect gateway and is associated with a local transit gateway through a transit VIF.

Traffic follows the shortest geographical path from source to destination. For example, packets from the UK data center that are targeted to resources in eu-west-2 travel across the local Direct Connect connection. In cases of cross-Region data transfers, such as from the UK data center to VPCs in us-east-1, the private WAN connection must be used to minimize costs on AWS. A network engineer has configured each transit gateway association on the Direct Connect gateway to advertise VPC-specific CIDR IP prefixes only from the local Region. The routes toward the other Region must be learned through BGP from the routers in the other data center in the original, non-aggregated form.

The company recently experienced a problem with cross-Region data transfers because of issues with its private WAN connection. The network engineer needs to modify the routing setup to prevent similar interruptions in the future. The solution cannot modify the original traffic routing goal when the network is operating normally.

Which modifications will meet these requirements? (Choose two.)

Options:

A.

Remove all the VPC CIDR prefixes from the list of subnets advertised through the local Direct Connect connection. Add the company's entire AWS environment aggregate route to the list of subnets advertised through the local Direct Connect connection.

B.

Add the CIDR prefixes from the other Region VPCs and the local VPC CIDR blocks to the list of subnets advertised through the local Direct Connect connection. Configure data center routers to make routing decisions based on the BGP communities received.

C.

Add the aggregate IP prefix for the other Region and the local VPC CIDR blocks to the list of subnets advertised through the local Direct Connect connection.

D.

Add the aggregate IP prefix for the company's entire AWS environment and the local VPC CIDR blocks to the list of subnets advertised through the local Direct Connect connection.

E.

Remove all the VPC CIDR prefixes from the list of subnets advertised through the local Direct Connect connection. Add both Regional aggregate IP prefixes to the list of subnets advertised through the Direct Connect connection on both sides of the network. Configure data center routers to make routing decisions based on the BGP communities received.

Question 18

A company delivers applications over the internet. An Amazon Route 53 public hosted zone is the authoritative DNS service for the company and its internet applications, all of which are offered from the same domain name.

A network engineer is working on a new version of one of the applications. All the application's components are hosted in the AWS Cloud. The application has a three-tier design. The front end is delivered through Amazon EC2 instances that are deployed in public subnets with Elastic IP addresses assigned. The backend components are deployed in private subnets from RFC1918.

Components of the application need to be able to access other components of the application within the application's VPC by using the same host names as the host names that are used over the public internet. The network engineer also needs to accommodate future DNS changes, such as the introduction of new host names or the retirement of DNS entries.

Which combination of steps will meet these requirements? (Choose three.)

Options:

A.

Add a geoproximity routing policy in Route 53.

B.

Create a Route 53 private hosted zone for the same domain name Associate the application’s VPC with the new private hosted zone.

C.

Enable DNS hostnames for the application's VPC.

D.

Create entries in the private hosted zone for each name in the public hosted zone by using the corresponding private IP addresses.

E.

Create an Amazon EventBridge (Amazon CloudWatch Events) rule that runs when AWS CloudTrail logs a Route 53 API call to the public hosted zone. Create an AWS Lambda function as the target of the rule. Configure the function to use the event information to update the private hosted zone.

F.

Add the private IP addresses in the existing Route 53 public hosted zone.

Question 19

A company has multiple AWS accounts. Each account contains one or more VPCs. A new security guideline requires the inspection of all traffic between VPCs.

The company has deployed a transit gateway that provides connectivity between all VPCs. The company also has deployed a shared services VPC with Amazon EC2 instances that include IDS services for stateful inspection. The EC2 instances are deployed across three Availability Zones. The company has set up VPC associations and routing on the transit gateway. The company has migrated a few test VPCs to the new solution for traffic inspection.

Soon after the configuration of routing, the company receives reports of intermittent connections for traffic that crosses Availability Zones.

What should a network engineer do to resolve this issue?

Options:

A.

Modify the transit gateway VPC attachment on the shared services VPC by enabling cross-Availability Zone load balancing.

B.

Modify the transit gateway VPC attachment on the shared services VPC by enabling appliance mode support.

C.

Modify the transit gateway by selecting VPN equal-cost multi-path (ECMP) routing support.

D.

Modify the transit gateway by selecting multicast support.

Question 20

A software company offers a software-as-a-service (SaaS) accounting application that is hosted in the AWS Cloud The application requires connectivity to the company's on-premises network. The company has two redundant 10 GB AWS Direct Connect connections between AWS and its on-premises network to accommodate the growing demand for the application.

The company already has encryption between its on-premises network and the colocation. The company needs to encrypt traffic between AWS and the edge routers in the colocation within the next few months. The company must maintain its current bandwidth.

What should a network engineer do to meet these requirements with the LEAST operational overhead?

Options:

A.

Deploy a new public VIF with encryption on the existing Direct Connect connections. Reroute traffic through the new public VIF.

B.

Create a virtual private gateway Deploy new AWS Site-to-Site VPN connections from on premises to the virtual private gateway Reroute traffic from the Direct Connect private VIF to the new VPNs.

C.

Deploy a new pair of 10 GB Direct Connect connections with MACsec. Configure MACsec on the edge routers. Reroute traffic to the new Direct Connect connections. Decommission the original Direct Connect connections

D.

Deploy a new pair of 10 GB Direct Connect connections with MACsec. Deploy a new public VIF on the new Direct Connect connections. Deploy two AWS Site-to-Site VPN connections on top of the new public VIF. Reroute traffic from the existing private VIF to the new Site-to-Site connections. Decommission the original Direct Connect connections.

Question 21

A company’s network engineer is designing a hybrid DNS solution for an AWS Cloud workload. Individual teams want to manage their own DNS hostnames for their applications in their development environment. The solution must integrate the application-specific hostnames with the centrally managed DNS hostnames from the on-premises network and must provide bidirectional name resolution. The solution also must minimize management overhead.

Which combination of steps should the network engineer take to meet these requirements? (Choose three.)

Options:

A.

Use an Amazon Route 53 Resolver inbound endpoint.

B.

Modify the DHCP options set by setting a custom DNS server value.

C.

Use an Amazon Route 53 Resolver outbound endpoint.

D.

Create DNS proxy servers.

E.

Create Amazon Route 53 private hosted zones.

F.

Set up a zone transfer between Amazon Route 53 and the on-premises DNS.

Question 22

A company is hosting an application on Amazon EC2 instances behind an Application Load Balancer. The instances are in an Amazon EC2 Auto Scaling group. Because of a recent change to a security group, external users cannot access the application.

A network engineer needs to prevent this downtime from happening again. The network engineer must implement a solution that remediates noncompliant changes to security groups.

Which solution will meet these requirements?

Options:

A.

Configure Amazon GuardDuty to detect inconsistencies between the desired security group configuration and the current security group configuration. Create an AWS Systems Manager Automation runbook to remediate noncompliant security groups.

B.

Configure an AWS Config rule to detect inconsistencies between the desired security group configuration and the current security group configuration. Configure AWS OpsWorks for Chef to remediate noncompliant security groups.

C.

Configure Amazon GuardDuty to detect inconsistencies between the desired security group configuration and the current security group configuration. Configure AWS OpsWorks for Chef to remediate noncompliant security groups.

D.

Configure an AWS Config rule to detect inconsistencies between the desired security group configuration and the current security group configuration. Create an AWS Systems Manager Automation runbook to remediate noncompliant security groups.

Question 23

You deploy an Amazon EC2 instance that runs a web server into a subnet in a VPC. An Internet gateway is attached, and the main route table has a default route (0.0.0.0/0) configured with a target of the Internet gateway.

The instance has a security group configured to allow as follows:

  • Protocol: TCP
  • Port: 80 inbound, nothing outbound

The Network ACL for the subnet is configured to allow as follows:

  • Protocol: TCP
  • Port: 80 inbound, nothing outbound

When you try to browse to the web server, you receive no response.

Which additional step should you take to receive a successful response?

Options:

A.

Add an entry to the security group outbound rules for Protocol: TCP, Port Range: 80

B.

Add an entry to the security group outbound rules for Protocol: TCP, Port Range: 1024-65535

C.

Add an entry to the Network ACL outbound rules for Protocol: TCP, Port Range: 80

D.

Add an entry to the Network ACL outbound rules for Protocol: TCP, Port Range: 1024-65535

Question 24

An Australian ecommerce company hosts all of its services in the AWS Cloud and wants to expand its customer base to the United States (US). The company is targeting the western US for the expansion.

The company’s existing AWS architecture consists of four AWS accounts with multiple VPCs deployed in the ap-southeast-2 Region. All VPCs are attached to a transit gateway in ap-southeast-2. There are dedicated VPCs for each application service. The company also has VPCs for centralized security features such as proxies, firewalls, and logging.

The company plans to duplicate the infrastructure from ap-southeast-2 to the us-west-1 Region. A network engineer must establish connectivity between the various applications in the two Regions. The solution must maximize bandwidth, minimize latency and minimize operational overhead.

Which solution will meet these requirements?

Options:

A.

Create VPN attachments between the two transit gateways. Configure the VPN attachments to use BGP routing between the two transit gateways.

B.

Peer the transit gateways in each Region. Configure routing between the two transit gateways for each Region's IP addresses.

C.

Create a VPN server in a VPC in each Region. Update the routing to point to the VPN servers for the IP addresses in alternate Regions.

D.

Attach the VPCs in us-west-1 to the transit gateway in ap-southeast-2.

Question 25

An IoT company sells hardware sensor modules that periodically send out temperature, humidity, pressure, and location data through the MQTT messaging protocol. The hardware sensor modules send this data to the company's on-premises MQTT brokers that run on Linux servers behind a load balancer. The hardware sensor modules have been hardcoded with public IP addresses to reach the brokers.

The company is growing and is acquiring customers across the world. The existing solution can no longer scale and is introducing additional latency because of the company's global presence. As a result, the company decides to migrate its entire infrastructure from on premises to the AWS Cloud. The company needs to migrate without reconfiguring the hardware sensor modules that are already deployed across the world. The solution also must minimize latency.

The company migrates the MQTT brokers to run on Amazon EC2 instances.

What should the company do next to meet these requirements?

Options:

A.

Place the EC2 instances behind a Network Load Balancer (NLB). Configure TCP listeners. Use Bring Your Own IP (BYOIP) from the on-premises network with the NLB.

B.

Place the EC2 instances behind a Network Load Balancer (NLB). Configure TCP listeners. Create an AWS Global Accelerator accelerator in front of the NLUse Bring Your Own IP (BYOIP) from the on-premises network with Global Accelerator.

C.

Place the EC2 instances behind an Application Load Balancer (ALB). Configure TCP listeners. Create an AWS Global Accelerator accelerator in front of the ALB. Use Bring Your Own IP (BYOIP) from the on-premises network with Global Accelerator

D.

Place the EC2 instances behind an Amazon CloudFront distribution. Use Bring Your Own IP (BYOIP) from the on-premises network with CloudFront.

Question 26

An organization launched an IPv6-only web portal to support IPv6-native mobile clients. Front-end instances launch in an Amazon VPC associated with an appropriate IPv6 CIDR. The VPC IPv4 CIDR is fully utilized. A single subnet exists in each of two Availability Zones with appropriately configured IPv6 CIDR associations. Auto Scaling is properly configured, and no Elastic Load Balancing is used.

Customers say the service is unavailable during peak load times. The network engineer attempts to launch an instance manually and receives the following message: “There are not enough free addresses in subnet ‘subnet-12345677’ to satisfy the requested number of instances.”

What action will resolve the availability problem?

Options:

A.

Create a new subnet using a VPC secondary IPv6 CIDR, and associate an IPv6 CIDR. Include the new subnet in the Auto Scaling group.

B.

Create a new subnet using a VPC secondary IPv4 CIDR, and associate an IPv6 CIDR. Include the new subnet in the Auto Scaling group.

C.

Resize the IPv6 CIDR on each of the existing subnets. Modify the Auto Scaling group maximum number of instances.

D.

Add a secondary IPv4 CIDR to the Amazon VPC. Assign secondary IPv4 address space to each of the existing subnets.

Question 27

A retail company is running its service on AWS. The company’s architecture includes Application Load Balancers (ALBs) in public subnets. The ALB target groups are configured to send traffic to backend Amazon EC2 instances in private subnets. These backend EC2 instances can call externally hosted services over the internet by using a NAT gateway.

The company has noticed in its billing that NAT gateway usage has increased significantly. A network engineer needs to find out the source of this increased usage.

Which options can the network engineer use to investigate the traffic through the NAT gateway? (Choose two.)

Options:

A.

Enable VPC flow logs on the NAT gateway's elastic network interface. Publish the logs to a log group in Amazon CloudWatch Logs. Use CloudWatch Logs Insights to query and analyze the logs.

B.

Enable NAT gateway access logs. Publish the logs to a log group in Amazon CloudWatch Logs. Use CloudWatch Logs Insights to query and analyze the logs.

C.

Configure Traffic Mirroring on the NAT gateway's elastic network interface. Send the traffic to an additional EC2 instance. Use tools such as tcpdump and Wireshark to query and analyze the mirrored traffic.

D.

Enable VPC flow logs on the NAT gateway's elastic network interface. Publish the logs to an Amazon S3 bucket. Create a custom table for the S3 bucket in Amazon Athena to describe the log structure. Use Athena to query and analyze the logs.

E.

Enable NAT gateway access logs. Publish the logs to an Amazon S3 bucket. Create a custom table for the S3 bucket in Amazon Athena to describe the log structure. Use Athena to query and analyze the logs.

Question 28

A company uses AWS Direct Connect to connect its corporate network to multiple VPCs in the same AWS account and the same AWS Region. Each VPC uses its own private VIF and its own virtual LAN on the Direct Connect connection. The company has grown and will soon surpass the limit of VPCs and private VIFs for each connection.

What is the MOST scalable way to add VPCs with on-premises connectivity?

Options:

A.

Provision a new Direct Connect connection to handle the additional VPCs. Use the new connection to connect additional VPCs.

B.

Create virtual private gateways for each VPC that is over the service quota. Use AWS Site-to-Site VPN to connect the virtual private gateways to the corporate network.

C.

Create a Direct Connect gateway, and add virtual private gateway associations to the VPCs. Configure a private VIF to connect to the corporate network.

D.

Create a transit gateway, and attach the VPCs. Create a Direct Connect gateway, and associate it with the transit gateway. Create a transit VIF to the Direct Connect gateway.

Question 29

A software-as-a-service (SaaS) provider hosts its solution on Amazon EC2 instances within a VPC in the AWS Cloud. All of the provider's customers also have their environments in the AWS Cloud.

A recent design meeting revealed that the customers have IP address overlap with the provider's AWS deployment. The customers have stated that they will not share their internal IP addresses and that they do not want to connect to the provider's SaaS service over the internet.

Which combination of steps is part of a solution that meets these requirements? (Choose two.)

Options:

A.

Deploy the SaaS service endpoint behind a Network Load Balancer.

B.

Configure an endpoint service, and grant the customers permission to create a connection to the endpoint service.

C.

Deploy the SaaS service endpoint behind an Application Load Balancer.

D.

Configure a VPC peering connection to the customer VPCs. Route traffic through NAT gateways.

E.

Deploy an AWS Transit Gateway, and connect the SaaS VPC to it. Share the transit gateway with the customers. Configure routing on the transit gateway.

Question 30

A company's AWS architecture consists of several VPCs. The VPCs include a shared services VPC and several application VPCs. The company has established network connectivity from all VPCs to the on-premises DNS servers.

Applications that are deployed in the application VPCs must be able to resolve DNS for internally hosted domains on premises. The applications also must be able to resolve local VPC domain names and domains that are hosted in Amazon Route 53 private hosted zones.

What should a network engineer do to meet these requirements?

Options:

A.

Create a new Route 53 Resolver inbound endpoint in the shared services VPC. Create forwarding rules for the on-premises hosted domains. Associate the rules with the new Resolver endpoint and each application VPC. Update each application VPC's DHCP configuration to point DNS resolution to the new Resolver endpoint.

B.

Create a new Route 53 Resolver outbound endpoint in the shared services VPC. Create forwarding rules for the on-premises hosted domains. Associate the rules with the new Resolver endpoint and each application VPC.

C.

Create a new Route 53 Resolver outbound endpoint in the shared services VPCreate forwarding rules for the on-premises hosted domains. Associate the rules with the new Resolver endpoint and each application VPUpdate each application VPC's DHCP configuration to point DNS resolution to the new Resolver endpoint.

D.

Create a new Route 53 Resolver inbound endpoint in the shared services VPC. Create forwarding rules for the on-premises hosted domains. Associate the rules with the new Resolver endpoint and each application VPC.

Question 31

A company has deployed a software-defined WAN (SD-WAN) solution to interconnect all of its offices. The company is migrating workloads to AWS and needs to extend its SD-WAN solution to support connectivity to these workloads.

A network engineer plans to deploy AWS Transit Gateway Connect and two SD-WAN virtual appliances to provide this connectivity. According to company policies, only a single SD-WAN virtual appliance can handle traffic from AWS workloads at a given time.

How should the network engineer configure routing to meet these requirements?

Options:

A.

Add a static default route in the transit gateway route table to point to the secondary SD-WAN virtual appliance. Add routes that are more specific to point to the primary SD-WAN virtual appliance.

B.

Configure the BGP community tag 7224:7300 on the primary SD-WAN virtual appliance for BGP routes toward the transit gateway.

C.

Configure the AS_PATH prepend attribute on the secondary SD-WAN virtual appliance for BGP routes toward the transit gateway.

D.

Disable equal-cost multi-path (ECMP) routing on the transit gateway for Transit Gateway Connect.

Question 32

A company uses a hybrid architecture and has an AWS Direct Connect connection between its on-premises data center and AWS. The company has production applications that run in the on-premises data center. The company also has production applications that run in a VPC. The applications that run in the on-premises data center need to communicate with the applications that run in the VPC. The company is using corp.example.com as the domain name for the on-premises resources and is using an Amazon Route 53 private hosted zone for aws.example.com to host the VPC resources.

The company is using an open-source recursive DNS resolver in a VPC subnet and is using a DNS resolver in the on-premises data center. The company's on-premises DNS resolver has a forwarder that directs requests for the aws.example.com domain name to the DNS resolver in the VPC. The DNS resolver in the VPC has a forwarder that directs requests for the corp.example.com domain name to the DNS resolver in the on-premises data center. The company has deckled to replace the open-source recursive DNS resolver with Amazon Route 53 Resolver endpoints.

Which combination of steps should a network engineer take to make this replacement? (Choose three.)

Options:

A.

Create a Route 53 Resolver rule to forward aws.example.com domain queries to the IP addresses of the outbound endpoint.

B.

Configure the on-premises DNS resolver to forward aws.example.com domain queries to the IP addresses of the inbound endpoint.

C.

Create a Route 53 Resolver inbound endpoint and a Route 53 Resolver outbound endpoint.

D.

Create a Route 53 Resolver rule to forward aws.example.com domain queries to the IP addresses of the inbound endpoint.

E.

Create a Route 53 Resolver rule to forward corp.example.com domain queries to the IP address of the on-premises DNS resolver.

F.

Configure the on-premises DNS resolver to forward aws.example.com queries to the IP addresses of the outbound endpoint.

Demo: 32 questions
Total 110 questions