Month End Sale Limited Time 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: 70percent

Amazon Web Services AIF-C01 AWS Certified AI Practitioner Exam Exam Practice Test

Demo: 41 questions
Total 97 questions

AWS Certified AI Practitioner Exam Questions and Answers

Question 1

A financial institution is building an AI solution to make loan approval decisions by using a foundation model (FM). For security and audit purposes, the company needs the AI solution's decisions to be explainable.

Which factor relates to the explainability of the AI solution's decisions?

Options:

A.

Model complexity

B.

Training time

C.

Number of hyperparameters

D.

Deployment time

Question 2

A company built a deep learning model for object detection and deployed the model to production.

Which AI process occurs when the model analyzes a new image to identify objects?

Options:

A.

Training

B.

Inference

C.

Model deployment

D.

Bias correction

Question 3

A company wants to develop ML applications to improve business operations and efficiency.

Select the correct ML paradigm from the following list for each use case. Each ML paradigm should be selected one or more times. (Select FOUR.)

• Supervised learning

• Unsupervised learning

Options:

Question 4

A company wants to use generative AI to increase developer productivity and software development. The company wants to use Amazon Q Developer.

What can Amazon Q Developer do to help the company meet these requirements?

Options:

A.

Create software snippets, reference tracking, and open-source license tracking.

B.

Run an application without provisioning or managing servers.

C.

Enable voice commands for coding and providing natural language search.

D.

Convert audio files to text documents by using ML models.

Question 5

Which metric measures the runtime efficiency of operating AI models?

Options:

A.

Customer satisfaction score (CSAT)

B.

Training time for each epoch

C.

Average response time

D.

Number of training instances

Question 6

Which AWS service or feature can help an AI development team quickly deploy and consume a foundation model (FM) within the team's VPC?

Options:

A.

Amazon Personalize

B.

Amazon SageMaker JumpStart

C.

PartyRock, an Amazon Bedrock Playground

D.

Amazon SageMaker endpoints

Question 7

An ecommerce company wants to improve search engine recommendations by customizing the results for each user of the company's ecommerce platform. Which AWS service meets these requirements?

Options:

A.

Amazon Personalize

B.

Amazon Kendra

C.

Amazon Rekognition

D.

Amazon Transcribe

Question 8

An AI practitioner wants to use a foundation model (FM) to design a search application. The search application must handle queries that have text and images.

Which type of FM should the AI practitioner use to power the search application?

Options:

A.

Multi-modal embedding model

B.

Text embedding model

C.

Multi-modal generation model

D.

Image generation model

Question 9

A company wants to build a lead prioritization application for its employees to contact potential customers. The application must give employees the ability to view and adjust the weights assigned to different variables in the model based on domain knowledge and expertise.

Which ML model type meets these requirements?

Options:

A.

Logistic regression model

B.

Deep learning model built on principal components

C.

K-nearest neighbors (k-NN) model

D.

Neural network

Question 10

A company wants to develop an educational game where users answer questions such as the following: "A jar contains six red, four green, and three yellow marbles. What is the probability of choosing a green marble from the jar?"

Which solution meets these requirements with the LEAST operational overhead?

Options:

A.

Use supervised learning to create a regression model that will predict probability.

B.

Use reinforcement learning to train a model to return the probability.

C.

Use code that will calculate probability by using simple rules and computations.

D.

Use unsupervised learning to create a model that will estimate probability density.

Question 11

An AI practitioner has a database of animal photos. The AI practitioner wants to automatically identify and categorize the animals in the photos without manual human effort.

Which strategy meets these requirements?

Options:

A.

Object detection

B.

Anomaly detection

C.

Named entity recognition

D.

Inpainting

Question 12

A company needs to train an ML model to classify images of different types of animals. The company has a large dataset of labeled images and will not label more data. Which type of learning should the company use to train the model?

Options:

A.

Supervised learning.

B.

Unsupervised learning.

C.

Reinforcement learning.

D.

Active learning.

Question 13

A company wants to make a chatbot to help customers. The chatbot will help solve technical problems without human intervention. The company chose a foundation model (FM) for the chatbot. The chatbot needs to produce responses that adhere to company tone.

Which solution meets these requirements?

Options:

A.

Set a low limit on the number of tokens the FM can produce.

B.

Use batch inferencing to process detailed responses.

C.

Experiment and refine the prompt until the FM produces the desired responses.

D.

Define a higher number for the temperature parameter.

Question 14

Which term describes the numerical representations of real-world objects and concepts that AI and natural language processing (NLP) models use to improve understanding of textual information?

Options:

A.

Embeddings

B.

Tokens

C.

Models

D.

Binaries

Question 15

A company manually reviews all submitted resumes in PDF format. As the company grows, the company expects the volume of resumes to exceed the company's review capacity. The company needs an automated system to convert the PDF resumes into plain text format for additional processing.

Which AWS service meets this requirement?

Options:

A.

Amazon Textract

B.

Amazon Personalize

C.

Amazon Lex

D.

Amazon Transcribe

Question 16

A company is developing an ML application. The application must automatically group similar customers and products based on their characteristics.

Which ML strategy should the company use to meet these requirements?

Options:

A.

Unsupervised learning

B.

Supervised learning

C.

Reinforcement learning

D.

Semi-supervised learning

Question 17

A company is using the Generative AI Security Scoping Matrix to assess security responsibilities for its solutions. The company has identified four different solution scopes based on the matrix.

Which solution scope gives the company the MOST ownership of security responsibilities?

Options:

A.

Using a third-party enterprise application that has embedded generative AI features.

B.

Building an application by using an existing third-party generative AI foundation model (FM).

C.

Refining an existing third-party generative AI foundation model (FM) by fine-tuning the model by using data specific to the business.

D.

Building and training a generative AI model from scratch by using specific data that a customer owns.

Question 18

A company wants to use a large language model (LLM) on Amazon Bedrock for sentiment analysis. The company wants to classify the sentiment of text passages as positive or negative.

Which prompt engineering strategy meets these requirements?

Options:

A.

Provide examples of text passages with corresponding positive or negative labels in the prompt followed by the new text passage to be classified.

B.

Provide a detailed explanation of sentiment analysis and how LLMs work in the prompt.

C.

Provide the new text passage to be classified without any additional context or examples.

D.

Provide the new text passage with a few examples of unrelated tasks, such as text summarization or question answering.

Question 19

A company wants to create a new solution by using AWS Glue. The company has minimal programming experience with AWS Glue.

Which AWS service can help the company use AWS Glue?

Options:

A.

Amazon Q Developer

B.

AWS Config

C.

Amazon Personalize

D.

Amazon Comprehend

Question 20

Which option is a benefit of using Amazon SageMaker Model Cards to document AI models?

Options:

A.

Providing a visually appealing summary of a model's capabilities.

B.

Standardizing information about a model's purpose, performance, and limitations.

C.

Reducing the overall computational requirements of a model.

D.

Physically storing models for archival purposes.

Question 21

A company wants to create a chatbot that answers questions about human resources policies. The company is using a large language model (LLM) and has a large digital documentation base.

Which technique should the company use to optimize the generated responses?

Options:

A.

Use Retrieval Augmented Generation (RAG).

B.

Use few-shot prompting.

C.

Set the temperature to 1.

D.

Decrease the token size.

Question 22

A retail company wants to build an ML model to recommend products to customers. The company wants to build the model based on responsible practices. Which practice should the company apply when collecting data to decrease model bias?

Options:

A.

Use data from only customers who match the demography of the company's overall customer base.

B.

Collect data from customers who have a past purchase history.

C.

Ensure that the data is balanced and collected from a diverse group.

D.

Ensure that the data is from a publicly available dataset.

Question 23

A financial institution is using Amazon Bedrock to develop an AI application. The application is hosted in a VPC. To meet regulatory compliance standards, the VPC is not allowed access to any internet traffic.

Which AWS service or feature will meet these requirements?

Options:

A.

AWS PrivateLink

B.

Amazon Macie

C.

Amazon CloudFront

D.

Internet gateway

Question 24

A company has developed an ML model for image classification. The company wants to deploy the model to production so that a web application can use the model.

The company needs to implement a solution to host the model and serve predictions without managing any of the underlying infrastructure.

Which solution will meet these requirements?

Options:

A.

Use Amazon SageMaker Serverless Inference to deploy the model.

B.

Use Amazon CloudFront to deploy the model.

C.

Use Amazon API Gateway to host the model and serve predictions.

D.

Use AWS Batch to host the model and serve predictions.

Question 25

A company wants to use language models to create an application for inference on edge devices. The inference must have the lowest latency possible.

Which solution will meet these requirements?

Options:

A.

Deploy optimized small language models (SLMs) on edge devices.

B.

Deploy optimized large language models (LLMs) on edge devices.

C.

Incorporate a centralized small language model (SLM) API for asynchronous communication with edge devices.

D.

Incorporate a centralized large language model (LLM) API for asynchronous communication with edge devices.

Question 26

A security company is using Amazon Bedrock to run foundation models (FMs). The company wants to ensure that only authorized users invoke the models. The company needs to identify any unauthorized access attempts to set appropriate AWS Identity and Access Management (IAM) policies and roles for future iterations of the FMs.

Which AWS service should the company use to identify unauthorized users that are trying to access Amazon Bedrock?

Options:

A.

AWS Audit Manager

B.

AWS CloudTrail

C.

Amazon Fraud Detector

D.

AWS Trusted Advisor

Question 27

An AI company periodically evaluates its systems and processes with the help of independent software vendors (ISVs). The company needs to receive email message notifications when an ISV's compliance reports become available.

Which AWS service can the company use to meet this requirement?

Options:

A.

AWS Audit Manager

B.

AWS Artifact

C.

AWS Trusted Advisor

D.

AWS Data Exchange

Question 28

A company wants to develop an Al application to help its employees check open customer claims, identify details for a specific claim, and access documents for a claim. Which solution meets these requirements?

Options:

A.

Use Agents for Amazon Bedrock with Amazon Fraud Detector to build the application.

B.

Use Agents for Amazon Bedrock with Amazon Bedrock knowledge bases to build the application.

C.

Use Amazon Personalize with Amazon Bedrock knowledge bases to build the application.

D.

Use Amazon SageMaker AI to build the application by training a new ML model.

Question 29

An e-commerce company wants to build a solution to determine customer sentiments based on written customer reviews of products.

Which AWS services meet these requirements? (Select TWO.)

Options:

A.

Amazon Lex

B.

Amazon Comprehend

C.

Amazon Polly

D.

Amazon Bedrock

E.

Amazon Rekognition

Question 30

A company is developing a mobile ML app that uses a phone's camera to diagnose and treat insect bites. The company wants to train an image classification model by using a diverse dataset of insect bite photos from different genders, ethnicities, and geographic locations around the world.

Which principle of responsible Al does the company demonstrate in this scenario?

Options:

A.

Fairness

B.

Explainability

C.

Governance

D.

Transparency

Question 31

A company has documents that are missing some words because of a database error. The company wants to build an ML model that can suggest potential words to fill in the missing text.

Which type of model meets this requirement?

Options:

A.

Topic modeling

B.

Clustering models

C.

Prescriptive ML models

D.

BERT-based models

Question 32

A company has built a chatbot that can respond to natural language questions with images. The company wants to ensure that the chatbot does not return inappropriate or unwanted images.

Which solution will meet these requirements?

Options:

A.

Implement moderation APIs.

B.

Retrain the model with a general public dataset.

C.

Perform model validation.

D.

Automate user feedback integration.

Question 33

A company wants to classify human genes into 20 categories based on gene characteristics. The company needs an ML algorithm to document how the inner mechanism of the model affects the output.

Which ML algorithm meets these requirements?

Options:

A.

Decision trees

B.

Linear regression

C.

Logistic regression

D.

Neural networks

Question 34

A company has built a solution by using generative AI. The solution uses large language models (LLMs) to translate training manuals from English into other languages. The company wants to evaluate the accuracy of the solution by examining the text generated for the manuals.

Which model evaluation strategy meets these requirements?

Options:

A.

Bilingual Evaluation Understudy (BLEU)

B.

Root mean squared error (RMSE)

C.

Recall-Oriented Understudy for Gisting Evaluation (ROUGE)

D.

F1 score

Question 35

A company wants to use a large language model (LLM) to develop a conversational agent. The company needs to prevent the LLM from being manipulated with common prompt engineering techniques to perform undesirable actions or expose sensitive information.

Which action will reduce these risks?

Options:

A.

Create a prompt template that teaches the LLM to detect attack patterns.

B.

Increase the temperature parameter on invocation requests to the LLM.

C.

Avoid using LLMs that are not listed in Amazon SageMaker.

D.

Decrease the number of input tokens on invocations of the LLM.

Question 36

An ML research team develops custom ML models. The model artifacts are shared with other teams for integration into products and services. The ML team retains the model training code and data. The ML team wants to builk a mechanism that the ML team can use to audit models.

Which solution should the ML team use when publishing the custom ML models?

Options:

A.

Create documents with the relevant information. Store the documents in Amazon S3.

B.

Use AWS A] Service Cards for transparency and understanding models.

C.

Create Amazon SageMaker Model Cards with Intended uses and training and inference details.

D.

Create model training scripts. Commit the model training scripts to a Git repository.

Question 37

A company trained an ML model on Amazon SageMaker to predict customer credit risk. The model shows 90% recall on training data and 40% recall on unseen testing data.

Which conclusion can the company draw from these results?

Options:

A.

The model is overfitting on the training data.

B.

The model is underfitting on the training data.

C.

The model has insufficient training data.

D.

The model has insufficient testing data.

Question 38

A company wants to enhance response quality for a large language model (LLM) for complex problem-solving tasks. The tasks require detailed reasoning and a step-by-step explanation process.

Which prompt engineering technique meets these requirements?

Options:

A.

Few-shot prompting

B.

Zero-shot prompting

C.

Directional stimulus prompting

D.

Chain-of-thought prompting

Question 39

A company wants to build an ML model by using Amazon SageMaker. The company needs to share and manage variables for model development across multiple teams.

Which SageMaker feature meets these requirements?

Options:

A.

Amazon SageMaker Feature Store

B.

Amazon SageMaker Data Wrangler

C.

Amazon SageMaker Clarify

D.

Amazon SageMaker Model Cards

Question 40

What does an F1 score measure in the context of foundation model (FM) performance?

Options:

A.

Model precision and recall

B.

Model speed in generating responses

C.

Financial cost of operating the model

D.

Energy efficiency of the model's computations

Question 41

A company wants to create an application to summarize meetings by using meeting audio recordings.

Select and order the correct steps from the following list to create the application. Each step should be selected one time or not at all. (Select and order THREE.)

• Convert meeting audio recordings to meeting text files by using Amazon Polly.

• Convert meeting audio recordings to meeting text files by using Amazon Transcribe.

• Store meeting audio recordings in an Amazon S3 bucket.

• Store meeting audio recordings in an Amazon Elastic Block Store (Amazon EBS) volume.

• Summarize meeting text files by using Amazon Bedrock.

• Summarize meeting text files by using Amazon Lex.

Options:

Demo: 41 questions
Total 97 questions