Weekend Sale Limited Time 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: 70percent

Amazon Web Services AIF-C01 AWS Certified AI Practitioner Exam Exam Practice Test

Demo: 45 questions
Total 150 questions

AWS Certified AI Practitioner Exam Questions and Answers

Question 1

A loan company is building a generative AI-based solution to offer new applicants discounts based on specific business criteria. The company wants to build and use an AI model responsibly to minimize bias that could negatively affect some customers.

Which actions should the company take to meet these requirements? (Select TWO.)

Options:

A.

Detect imbalances or disparities in the data.

B.

Ensure that the model runs frequently.

C.

Evaluate the model's behavior so that the company can provide transparency to stakeholders.

D.

Use the Recall-Oriented Understudy for Gisting Evaluation (ROUGE) technique to ensure that the model is 100% accurate.

E.

Ensure that the model's inference time is within the accepted limits.

Question 2

A company is building an application that needs to generate synthetic data that is based on existing data.

Which type of model can the company use to meet this requirement?

Options:

A.

Generative adversarial network (GAN)

B.

XGBoost

C.

Residual neural network

D.

WaveNet

Question 3

Which option is a characteristic of AI governance frameworks for building trust and deploying human-centered AI technologies?

Options:

A.

Expanding initiatives across business units to create long-term business value

B.

Ensuring alignment with business standards, revenue goals, and stakeholder expectations

C.

Overcoming challenges to drive business transformation and growth

D.

Developing policies and guidelines for data, transparency, responsible AI, and compliance\

Question 4

Which AWS service or feature can help an AI development team quickly deploy and consume a foundation model (FM) within the team's VPC?

Options:

A.

Amazon Personalize

B.

Amazon SageMaker JumpStart

C.

PartyRock, an Amazon Bedrock Playground

D.

Amazon SageMaker endpoints

Question 5

A company wants to create a new solution by using AWS Glue. The company has minimal programming experience with AWS Glue.

Which AWS service can help the company use AWS Glue?

Options:

A.

Amazon Q Developer

B.

AWS Config

C.

Amazon Personalize

D.

Amazon Comprehend

Question 6

A company wants to develop an Al application to help its employees check open customer claims, identify details for a specific claim, and access documents for a claim. Which solution meets these requirements?

Options:

A.

Use Agents for Amazon Bedrock with Amazon Fraud Detector to build the application.

B.

Use Agents for Amazon Bedrock with Amazon Bedrock knowledge bases to build the application.

C.

Use Amazon Personalize with Amazon Bedrock knowledge bases to build the application.

D.

Use Amazon SageMaker AI to build the application by training a new ML model.

Question 7

A company wants to assess the costs that are associated with using a large language model (LLM) to generate inferences. The company wants to use Amazon Bedrock to build generative AI applications.

Which factor will drive the inference costs?

Options:

A.

Number of tokens consumed

B.

Temperature value

C.

Amount of data used to train the LLM

D.

Total training time

Question 8

A company is using a pre-trained large language model (LLM) to extract information from documents. The company noticed that a newer LLM from a different provider is available on Amazon Bedrock. The company wants to transition to the new LLM on Amazon Bedrock.

What does the company need to do to transition to the new LLM?

Options:

A.

Create a new labeled dataset

B.

Perform feature engineering.

C.

Adjust the prompt template.

D.

Fine-tune the LLM.

Question 9

A company needs to choose a model from Amazon Bedrock to use internally. The company must identify a model that generates responses in a style that the company's employees prefer.

What should the company do to meet these requirements?

Options:

A.

Evaluate the models by using built-in prompt datasets.

B.

Evaluate the models by using a human workforce and custom prompt datasets.

C.

Use public model leaderboards to identify the model.

D.

Use the model InvocationLatency runtime metrics in Amazon CloudWatch when trying models.

Question 10

Which phase of the ML lifecycle determines compliance and regulatory requirements?

Options:

A.

Feature engineering

B.

Model training

C.

Data collection

D.

Business goal identification

Question 11

An AI practitioner is building a model to generate images of humans in various professions. The AI practitioner discovered that the input data is biased and that specific attributes affect the image generation and create bias in the model.

Which technique will solve the problem?

Options:

A.

Data augmentation for imbalanced classes

B.

Model monitoring for class distribution

C.

Retrieval Augmented Generation (RAG)

D.

Watermark detection for images

Question 12

An AI practitioner has built a deep learning model to classify the types of materials in images. The AI practitioner now wants to measure the model performance.

Which metric will help the AI practitioner evaluate the performance of the model?

Options:

A.

Confusion matrix

B.

Correlation matrix

C.

R2 score

D.

Mean squared error (MSE)

Question 13

A company is developing an ML model to predict customer churn.

Which evaluation metric will assess the model's performance on a binary classification task such as predicting chum?

Options:

A.

F1 score

B.

Mean squared error (MSE)

C.

R-squared

D.

Time used to train the model

Question 14

An ML research team develops custom ML models. The model artifacts are shared with other teams for integration into products and services. The ML team retains the model training code and data. The ML team wants to builk a mechanism that the ML team can use to audit models.

Which solution should the ML team use when publishing the custom ML models?

Options:

A.

Create documents with the relevant information. Store the documents in Amazon S3.

B.

Use AWS A] Service Cards for transparency and understanding models.

C.

Create Amazon SageMaker Model Cards with Intended uses and training and inference details.

D.

Create model training scripts. Commit the model training scripts to a Git repository.

Question 15

A company is using a pre-trained large language model (LLM) to build a chatbot for product recommendations. The company needs the LLM outputs to be short and written in a specific language.

Which solution will align the LLM response quality with the company's expectations?

Options:

A.

Adjust the prompt.

B.

Choose an LLM of a different size.

C.

Increase the temperature.

D.

Increase the Top K value.

Question 16

A company is using the Generative AI Security Scoping Matrix to assess security responsibilities for its solutions. The company has identified four different solution scopes based on the matrix.

Which solution scope gives the company the MOST ownership of security responsibilities?

Options:

A.

Using a third-party enterprise application that has embedded generative AI features.

B.

Building an application by using an existing third-party generative AI foundation model (FM).

C.

Refining an existing third-party generative AI foundation model (FM) by fine-tuning the model by using data specific to the business.

D.

Building and training a generative AI model from scratch by using specific data that a customer owns.

Question 17

A bank is building a chatbot to answer customer questions about opening a bank account. The chatbot will use public bank documents to generate responses. The company will use Amazon Bedrock and prompt engineering to improve the chatbot's responses.

Which prompt engineering technique meets these requirements?

Options:

A.

Complexity-based prompting

B.

Zero-shot prompting

C.

Few-shot prompting

D.

Directional stimulus prompting

Question 18

A company is implementing intelligent agents to provide conversational search experiences for its customers. The company needs a database service that will support storage and queries of embeddings from a generative AI model as vectors in the database.

Which AWS service will meet these requirements?

Options:

A.

Amazon Athena

B.

Amazon Aurora PostgreSQL

C.

Amazon Redshift

D.

Amazon EMR

Question 19

A company trained an ML model on Amazon SageMaker to predict customer credit risk. The model shows 90% recall on training data and 40% recall on unseen testing data.

Which conclusion can the company draw from these results?

Options:

A.

The model is overfitting on the training data.

B.

The model is underfitting on the training data.

C.

The model has insufficient training data.

D.

The model has insufficient testing data.

Question 20

A company is building a customer service chatbot. The company wants the chatbot to improve its responses by learning from past interactions and online resources.

Which AI learning strategy provides this self-improvement capability?

Options:

A.

Supervised learning with a manually curated dataset of good responses and bad responses

B.

Reinforcement learning with rewards for positive customer feedback

C.

Unsupervised learning to find clusters of similar customer inquiries

D.

Supervised learning with a continuously updated FAQ database

Question 21

A company wants to keep its foundation model (FM) relevant by using the most recent data. The company wants to implement a model training strategy that includes regular updates to the FM.

Which solution meets these requirements?

Options:

A.

Batch learning

B.

Continuous pre-training

C.

Static training

D.

Latent training

Question 22

Which strategy evaluates the accuracy of a foundation model (FM) that is used in image classification tasks?

Options:

A.

Calculate the total cost of resources used by the model.

B.

Measure the model's accuracy against a predefined benchmark dataset.

C.

Count the number of layers in the neural network.

D.

Assess the color accuracy of images processed by the model.

Question 23

A company is building a contact center application and wants to gain insights from customer conversations. The company wants to analyze and extract key information from the audio of the customer calls.

Which solution meets these requirements?

Options:

A.

Build a conversational chatbot by using Amazon Lex.

B.

Transcribe call recordings by using Amazon Transcribe.

C.

Extract information from call recordings by using Amazon SageMaker Model Monitor.

D.

Create classification labels by using Amazon Comprehend.

Question 24

A company wants to create an application by using Amazon Bedrock. The company has a limited budget and prefers flexibility without long-term commitment.

Which Amazon Bedrock pricing model meets these requirements?

Options:

A.

On-Demand

B.

Model customization

C.

Provisioned Throughput

D.

Spot Instance

Question 25

A company is building a new generative AI chatbot. The chatbot uses an Amazon Bedrock foundation model (FM) to generate responses. During testing, the company notices that the chatbot is prone to prompt injection attacks.

What can the company do to secure the chatbot with the LEAST implementation effort?

Options:

A.

Fine-tune the FM to avoid harmful responses.

B.

Use Amazon Bedrock Guardrails content filters and denied topics.

C.

Change the FM to a more secure FM.

D.

Use chain-of-thought prompting to produce secure responses.

Question 26

A company is building a chatbot to improve user experience. The company is using a large language model (LLM) from Amazon Bedrock for intent detection. The company wants to use few-shot learning to improve intent detection accuracy.

Which additional data does the company need to meet these requirements?

Options:

A.

Pairs of chatbot responses and correct user intents

B.

Pairs of user messages and correct chatbot responses

C.

Pairs of user messages and correct user intents

D.

Pairs of user intents and correct chatbot responses

Question 27

A customer service team is developing an application to analyze customer feedback and automatically classify the feedback into different categories. The categories include product quality, customer service, and delivery experience.

Which AI concept does this scenario present?

Options:

A.

Computer vision

B.

Natural language processing (NLP)

C.

Recommendation systems

D.

Fraud detection

Question 28

Which option is a benefit of using Amazon SageMaker Model Cards to document AI models?

Options:

A.

Providing a visually appealing summary of a model's capabilities.

B.

Standardizing information about a model's purpose, performance, and limitations.

C.

Reducing the overall computational requirements of a model.

D.

Physically storing models for archival purposes.

Question 29

A retail store wants to predict the demand for a specific product for the next few weeks by using the Amazon SageMaker DeepAR forecasting algorithm.

Which type of data will meet this requirement?

Options:

A.

Text data

B.

Image data

C.

Time series data

D.

Binary data

Question 30

A company has terabytes of data in a database that the company can use for business analysis. The company wants to build an AI-based application that can build a SQL query from input text that employees provide. The employees have minimal experience with technology.

Which solution meets these requirements?

Options:

A.

Generative pre-trained transformers (GPT)

B.

Residual neural network

C.

Support vector machine

D.

WaveNet

Question 31

A company is implementing the Amazon Titan foundation model (FM) by using Amazon Bedrock. The company needs to supplement the model by using relevant data from the company's private data sources.

Which solution will meet this requirement?

Options:

A.

Use a different FM

B.

Choose a lower temperature value

C.

Create an Amazon Bedrock knowledge base

D.

Enable model invocation logging

Question 32

A company is using a generative AI model to develop a digital assistant. The model's responses occasionally include undesirable and potentially harmful content. Select the correct Amazon Bedrock filter policy from the following list for each mitigation action. Each filter policy should be selected one time. (Select FOUR.)

• Content filters

• Contextual grounding check

• Denied topics

• Word filters

Options:

Question 33

Which option describes embeddings in the context of AI?

Options:

A.

A method for compressing large datasets

B.

An encryption method for securing sensitive data

C.

A method for visualizing high-dimensional data

D.

A numerical method for data representation in a reduced dimensionality space

Question 34

How can companies use large language models (LLMs) securely on Amazon Bedrock?

Options:

A.

Design clear and specific prompts. Configure AWS Identity and Access Management (IAM) roles and policies by using least privilege access.

B.

Enable AWS Audit Manager for automatic model evaluation jobs.

C.

Enable Amazon Bedrock automatic model evaluation jobs.

D.

Use Amazon CloudWatch Logs to make models explainable and to monitor for bias.

Question 35

Which technique breaks a complex task into smaller subtasks that are sent sequentially to a large language model (LLM)?

Options:

A.

One-shot prompting

B.

Prompt chaining

C.

Tree of thoughts

D.

Retrieval Augmented Generation (RAG)

Question 36

A company wants to use a large language model (LLM) on Amazon Bedrock for sentiment analysis. The company wants to know how much information can fit into one prompt.

Which consideration will inform the company's decision?

Options:

A.

Temperature

B.

Context window

C.

Batch size

D.

Model size

Question 37

A retail company wants to build an ML model to recommend products to customers. The company wants to build the model based on responsible practices. Which practice should the company apply when collecting data to decrease model bias?

Options:

A.

Use data from only customers who match the demography of the company's overall customer base.

B.

Collect data from customers who have a past purchase history.

C.

Ensure that the data is balanced and collected from a diverse group.

D.

Ensure that the data is from a publicly available dataset.

Question 38

An AI practitioner trained a custom model on Amazon Bedrock by using a training dataset that contains confidential data. The AI practitioner wants to ensure that the custom model does not generate inference responses based on confidential data.

How should the AI practitioner prevent responses based on confidential data?

Options:

A.

Delete the custom model. Remove the confidential data from the training dataset. Retrain the custom model.

B.

Mask the confidential data in the inference responses by using dynamic data masking.

C.

Encrypt the confidential data in the inference responses by using Amazon SageMaker.

D.

Encrypt the confidential data in the custom model by using AWS Key Management Service (AWS KMS).

Question 39

A student at a university is copying content from generative AI to write essays.

Which challenge of responsible generative AI does this scenario represent?

Options:

A.

Toxicity

B.

Hallucinations

C.

Plagiarism

D.

Privacy

Question 40

A company wants to make a chatbot to help customers. The chatbot will help solve technical problems without human intervention. The company chose a foundation model (FM) for the chatbot. The chatbot needs to produce responses that adhere to company tone.

Which solution meets these requirements?

Options:

A.

Set a low limit on the number of tokens the FM can produce.

B.

Use batch inferencing to process detailed responses.

C.

Experiment and refine the prompt until the FM produces the desired responses.

D.

Define a higher number for the temperature parameter.

Question 41

An ecommerce company is deploying a chatbot. The chatbot will give users the ability to ask questions about the company's products and receive details on users' orders. The company must implement safeguards for the chatbot to filter harmful content from the input prompts and chatbot responses.

Which AWS feature or resource meets these requirements?

Options:

A.

Amazon Bedrock Guardrails

B.

Amazon Bedrock Agents

C.

Amazon Bedrock inference APIs

D.

Amazon Bedrock custom models

Question 42

Which functionality does Amazon SageMaker Clarify provide?

Options:

A.

Integrates a Retrieval Augmented Generation (RAG) workflow

B.

Monitors the quality of ML models in production

C.

Documents critical details about ML models

D.

Identifies potential bias during data preparation

Question 43

Which feature of Amazon OpenSearch Service gives companies the ability to build vector database applications?

Options:

A.

Integration with Amazon S3 for object storage

B.

Support for geospatial indexing and queries

C.

Scalable index management and nearest neighbor search capability

D.

Ability to perform real-time analysis on streaming data

Question 44

A company's large language model (LLM) is experiencing hallucinations.

How can the company decrease hallucinations?

Options:

A.

Set up Agents for Amazon Bedrock to supervise the model training.

B.

Use data pre-processing and remove any data that causes hallucinations.

C.

Decrease the temperature inference parameter for the model.

D.

Use a foundation model (FM) that is trained to not hallucinate.

Question 45

An AI practitioner is using a large language model (LLM) to create content for marketing campaigns. The generated content sounds plausible and factual but is incorrect.

Which problem is the LLM having?

Options:

A.

Data leakage

B.

Hallucination

C.

Overfitting

D.

Underfitting

Demo: 45 questions
Total 150 questions